AoPS Community

Greece National Olympiad 1995

www.artofproblemsolving.com/community/c5175
by socrates, M4RI0, matex (L)(L)(L)

1 Find all positive integers n such that $-5^{4}+5^{5}+5^{n}$ is a perfect square. Do the same for $2^{4}+2^{7}+2^{n}$.

2 Let $A B C$ be a triangle with $A B=A C$ and let D be a point on $B C$ such that the incircle of $A B D$ and the excircle of $A D C$ corresponding to A have the same radius. Prove that this radius is equal to one quarter of the altitude from B of triangle $A B C$.

3 If the equation $a x^{2}+(c-b) x+(e-d)=0$ has real roots greater than 1 , prove that the equation $a x^{4}+b x^{3}+c x^{2}+d x+e=0$ has at least one real root.

4 Given are the lines $l_{1}, l_{2}, \ldots, l_{k}$ in the plane, no two of which are parallel and no three of which are concurrent. For which k can one label the intersection points of these lines by $1,2, \ldots, k-1$ so that in each of the given lines all the labels appear exactly once?

