AoPS Community

Greece National Olympiad 1996

www.artofproblemsolving.com/community/c5176
by parmenides51, moldovan, SUPERMAN2, socrates

1 Let a_{n} be a sequence of positive numbers such that:
i) $\frac{a_{n+2}}{a_{n}}=\frac{1}{4}$, for every $n \in \mathbb{N}^{\star}$
ii) $\frac{a_{k+1}}{a_{k}}+\frac{a_{n+1}}{a_{n}}=1$, for every $k, n \in \mathbb{N}^{\star}$ with $|k-n| \neq 1$.
(a) Prove that $\left(a_{n}\right)$ is a geometric progression.
(n) Prove that exists $t>0$, such that $\sqrt{a_{n+1}} \leq \frac{1}{2} a_{n}+t$

2 Let $A B C$ be an acute triangle, $A D, B E, C Z$ its altitudes and H its orthocenter. Let $A I, A \Theta$ be the internal and external bisectors of angle A. Let M, N be the midpoints of $B C, A H$, respectively. Prove that:
(a) $M N$ is perpendicular to $E Z$
(b) if $M N$ cuts the segments $A I, A \Theta$ at the points K, L, then $K L=A H$

3 Prove that among 81 natural numbers whose prime divisors are in the set $\{2,3,5\}$ there exist four numbers whose product is the fourth power of an integer.

4 Find the number of functions $f:\{1,2, \ldots, n\} \rightarrow\{1995,1996\}$ such that $f(1)+f(2)+\ldots+f(1996)$ is odd.

