AoPS Community

Greece National Olympiad 1998

www.artofproblemsolving.com/community/c5178
by WakeUp, reda

1 Prove that for any integer $n>3$ there exist infinitely many non-constant arithmetic progressions of length $n-1$ whose terms are positive integers whose product is a perfect n-th power.

2 For a regular n-gon, let M be the set of the lengths of the segments joining its vertices. Show that the sum of the squares of the elements of M is greater than twice the area of the polygon.

3 Prove that for any non-zero real numbers a, b, c,

$$
\frac{(b+c-a)^{2}}{(b+c)^{2}+a^{2}}+\frac{(c+a-b)^{2}}{(c+a)^{2}+b^{2}}+\frac{(a+b-c)^{2}}{(a+b)^{2}+c^{2}} \geq \frac{3}{5} .
$$

4 Let a function $g: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ satisfy $g(0)=0$ and $g(n)=n-g(g(n-1))$ for all $n \geq 1$. Prove that:
a) $g(k) \geq g(k-1)$ for any positive integer k.
b) There is no k such that $g(k-1)=g(k)=g(k+1)$.

