

AoPS Community

Greece National Olympiad 1999

www.artofproblemsolving.com/community/c5179 by WakeUp

1	Let $f(x) = ax^2 + bx + c$, where a, b, c are nonnegative real numbers, not all equal to zero. Prove that $f(xy)^2 \le f(x^2)f(y^2)$ for all real numbers x, y .
2	A right triangle has integer side lengths, and the sum of its area and the length of one of its legs equals 75. Find the side lengths of the triangle.
3	In an acute-angled triangle ABC , AD , BE and CF are the altitudes and H the orthocentre. Lines EF and BC meet at N . The line passing through D and parallel to FE meets lines AB and AC at K and L , respectively. Prove that the circumcircle of the triangle NKL bisects the side BC .
4	On a circle are given $n \ge 3$ points. At most, how many parts can the segments with the end- points at these n points divide the interior of the circle into?

Art of Problem Solving is an ACS WASC Accredited School.