AoPS Community

Greece National Olympiad 2000

www.artofproblemsolving.com/community/c5180
by socrates, nickolas

1 Consider a rectangle $A B C D$ with $A B=a$ and $A D=b$. Let l be a line through O, the center of the rectangle, that cuts $A D$ in E such that $A E / E D=1 / 2$. Let M be any point on l, interior to the rectangle.
Find the necessary and sucient condition on a and b that the four distances from M to lines $A D, A B, D C, B C$ in this order form an arithmetic progression.
$2 \quad$ Find all prime numbers p such that $1+p+p^{2}+p^{3}+p^{4}$ is a perfect square.
3 Find the maximum value of k such that

$$
\frac{x y}{\sqrt{\left(x^{2}+y^{2}\right)\left(3 x^{2}+y^{2}\right)}} \leq \frac{1}{k}
$$

holds for all positive numbers x and y.
4 The subsets $A_{1}, A_{2}, \ldots, A_{2000}$ of a finite set M satisfy $\left|A_{i}\right|>\frac{2}{3}|M|$ for each $i=1,2, \ldots, 2000$. Prove that there exists $m \in M$ which belongs to at least 1334 of the subsets A_{i}.

