AoPS Community

Greece National Olympiad 2001

www.artofproblemsolving.com/community/c5181
by socrates

1 A triangle $A B C$ is inscribed in a circle of radius R. Let $B D$ and $C E$ be the bisectors of the angles B and C respectively and let the line $D E$ meet the arc $A B$ not containing C at point K. Let A_{1}, B_{1}, C_{1} be the feet of perpendiculars from K to $B C, A C, A B$, and x, y be the distances from D and E to $B C$, respectively.
(a) Express the lengths of $K A_{1}, K B_{1}, K C_{1}$ in terms of x, y and the ratio $l=K D / E D$.
(b) Prove that $\frac{1}{K B}=\frac{1}{K A}+\frac{1}{K C}$.

2 Prove that there are no positive integers a, b such that $(15 a+b)(a+15 b)$ is a power of 3.
$3 \quad$ A function $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ satises $f(1)=3$ and

$$
f(m+n)+f(m-n)-m+n-1=\frac{f(2 m)+f(2 n)}{2}
$$

for any non-negative integers m and n with $m \geq n$. Find all such functions f.
4 The numbers 1 to 500 are written on a board. Two pupils A and B play the following game: A player in turn deletes one of the numbers from the board. The game is over when only two numbers remain. Player B wins if the sum of the two remaining numbers is divisible by 3 , otherwise A wins. If A plays rst , show that B has a winning strategy.

