

AoPS Community

2002 Greece National Olympiad

Greece National Olympiad 2002

www.artofproblemsolving.com/community/c5182 by nickolas, hardsoul

 Seniors

February 16th

- 1 The real numbers a, b, c with $bc \neq 0$ satisfy $\frac{1-c^2}{bc} \geq 0$. Prove that $10(a^2+b^2+c^2-bc^3) \geq 2ab+5ac$.
- **2** A student of the National Technical University was reading advanced mathematics last summer for 37 days according to the following rules :
 - (a) He was reading at least one hour every day.
 - (b) He was reading an integer number of hours, but not more than 12, each day.
 - (c) He had to read at most 60 hours in total.

Prove that there were some successive days during which the student was reading exactly 13 hours in total.

- **3** In a triangle ABC we have $\angle C > 10^0$ and $\angle B = \angle C + 10^0$. We consider point E on side AB such that $\angle ACE = 10^0$, and point D on side AC such that $\angle DBA = 15^0$. Let $Z \neq A$ be a point of interaction of the circumcircles of the triangles ABD and AEC. Prove that $\angle ZBA > \angle ZCA$.
- 4 (a) Positive integers p, q, r, a satisfy $pq = ra^2$, where r is prime and p, q are relatively prime. Prove that one of the numbers p, q is a perfect square. (b) Examine if there exists a prime p such that $p(2^{p+1} - 1)$ is a perfect square.

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱