AoPS Community

Greece National Olympiad 2002

www.artofproblemsolving.com/community/c5182
by nickolas, hardsoul

- Seniors
- February 16th

1 The real numbers a, b, c with $b c \neq 0$ satisfy $\frac{1-c^{2}}{b c} \geq 0$. Prove that $10\left(a^{2}+b^{2}+c^{2}-b c^{3}\right) \geq 2 a b+5 a c$.

2 A student of the National Technical University was reading advanced mathematics last summer for 37 days according to the following rules:
(a) He was reading at least one hour every day.
(b) He was reading an integer number of hours, but not more than 12, each day.
(c) He had to read at most 60 hours in total.

Prove that there were some successive days during which the student was reading exactly 13 hours in total.

3 In a triangle $A B C$ we have $\angle C>10^{0}$ and $\angle B=\angle C+10^{0}$. We consider point E on side $A B$ such that $\angle A C E=10^{\circ}$, and point D on side $A C$ such that $\angle D B A=15^{\circ}$. Let $Z \neq A$ be a point of interection of the circumcircles of the triangles $A B D$ and $A E C$. Prove that $\angle Z B A>\angle Z C A$.

4 (a) Positive integers p, q, r, a satisfy $p q=r a^{2}$, where r is prime and p, q are relatively prime. Prove that one of the numbers p, q is a perfect square.
(b) Examine if there exists a prime p such that $p\left(2^{p+1}-1\right)$ is a perfect square.

