AoPS Community

Greece National Olympiad 2003

www.artofproblemsolving.com/community/c5183
by socrates

1 If a, b, c, d are positive numbers satisfying $a^{3}+b^{3}+3 a b=c+d=1$, prove that

$$
\left(a+\frac{1}{a}\right)^{3}+\left(b+\frac{1}{b}\right)^{3}+\left(c+\frac{1}{c}\right)^{3}+\left(d+\frac{1}{d}\right)^{3} \geq 40
$$

2 Find all real solutions of the system

$$
\left\{\begin{array}{l}
x^{2}+y^{2}-z(x+y)=2, \\
y^{2}+z^{2}-x(y+z)=4, \\
z^{2}+x^{2}-y(z+x)=8
\end{array}\right.
$$

$3 \quad$ Given are a circle \mathcal{C} with center K and radius r, point A on the circle and point R in its exterior. Consider a variable line e through R that intersects the circle at two points B and C. Let H be the orthocenter of triangle $A B C$.

Show that there is a unique point T in the plane of circle \mathcal{C} such that the sum $H A^{2}+H T^{2}$ remains constant (as evaries.)

4 On the set Σ of points of the plane Π we dene the operation $*$ which maps each pair (X, Y) of points in Σ to the point $Z=X * Y$ that is symmetric to X with respect to Y. Consider a square $A B C D$ in Π. Is it possible, using the points A, B, C and applying the operation $*$ nitely many times, to construct the point D ?

