## AoPS Community

## Greece National Olympiad 2004

www.artofproblemsolving.com/community/c5184
by socrates

1 Find the greatest value of $M \in \mathbb{R}$ such that the following inequality is true $\forall x, y, z \in \mathbb{R} x^{4}+$ $y^{4}+z^{4}+x y z(x+y+z) \geq M(x y+y z+z x)^{2}$.

2 If $m \geq 2$ show that there does not exist positive integers $x_{1}, x_{2}, \ldots, x_{m}$, such that

$$
x_{1}<x_{2}<\ldots<x_{m} \text { and } \frac{1}{x_{1}^{3}}+\frac{1}{x_{2}^{3}}+\ldots+\frac{1}{x_{m}^{3}}=1 .
$$

3 Consider a circle $K(O, r)$ and a point $A$ outside $K$. A line $\epsilon$ different from $A O$ cuts $K$ at $B$ and $C$, where $B$ lies between $A$ and $C$.
Now the symmetric line of $\epsilon$ with respect to axis of symmetry the line $A O$ cuts $K$ at $E$ and $D$, where $E$ lies between $A$ and $D$.
Show that the diagonals of the quadrilateral $B C D E$ intersect in a fixed point.
$4 \quad$ Let $M \subset \mathbb{N}^{*}$ such that $|M|=2004$.
If no element of $M$ is equal to the sum of any two elements of $M$, find the least value that the greatest element of $M$ can take.

