AoPS Community

Greece National Olympiad 2005

www.artofproblemsolving.com/community/c5185
by silouan, leepakhin, nickolas, jpe

- \quad Seniors
- \quad February 12th

1 Find the polynomial $P(x)$ with real coefficients such that $P(2)=12$ and $P\left(x^{2}\right)=x^{2}\left(x^{2}+1\right) P(x)$ for each $x \in \mathbb{R}$.

2 The sequence $\left(a_{n}\right)$ is defined by $a_{1}=1$ and $a_{n}=a_{n-1}+\frac{1}{n^{3}}$ for $n>1$.
(a) Prove that $a_{n}<\frac{5}{4}$ for all n.
(b) Given $\epsilon>0$, find the smallest natural number n_{0} such that $\left|a_{n+1}-a_{n}\right|<\epsilon$ for all $n>n_{0}$.

3 We know that k is a positive integer and the equation

$$
\begin{equation*}
x^{3}+y^{3}-2 y\left(x^{2}-x y+y^{2}\right)=k^{2}(x-y) \tag{1}
\end{equation*}
$$

has one solution $\left(x_{0}, y_{0}\right)$ with $x_{0}, y_{0} \in \mathbb{Z}-\{0\}$ and $x_{0} \neq y_{0}$. Prove that
i) the equation (1) has a finite number of solutions (x, y) with $x, y \in \mathbb{Z}$ and $x \neq y$;
ii) it is possible to find 11 addition different solutions (X, Y) of the equation (1) with $X, Y \in$ $\mathbb{Z}-\{0\}$ and $X \neq Y$ where X, Y are functions of x_{0}, y_{0}.

4 Let $O X_{1}, O X_{2}$ be rays in the interior of a convex angle $X O Y$ such that $\angle X O X_{1}=\angle Y O Y_{1}<$ $\frac{1}{3} \angle X O Y$. Points K on $O X_{1}$ and L on $O Y_{1}$ are fixed so that $O K=O L$, and points A, B are vary on rays ($O X,(O Y$ respectively such that the area of the pentagon $O A K L B$ remains constant. Prove that the circumcircle of the triangle $O A B$ passes from a fixed point, other than O.

