AoPS Community

Greece National Olympiad 2006

www.artofproblemsolving.com/community/c5186
by socrates, stergiu

1 How many 5 digit positive integers are there such that each of its digits, except for the last one, is greater than or equal to the next digit?

2 Let n be a positive integer. Prove that the equation

$$
x+y+\frac{1}{x}+\frac{1}{y}=3 n
$$

does not have solutions in positive rational numbers.
3 Let a triangle $A B C$ and the cevians $A L, B N, C M$ such that $A L$ is the bisector of angle A. If $\angle A L B=\angle A N M$, prove that $\angle M N L=90$.

4 Does there exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$, which satisfies both conditions :
a) $f(x+y+z) \leq 3(x y+y z+z x)$ for all real numbers x, y, z
and
b) there exist function g and natural number n, such that
$g(g(x))=x^{2 n+1}$ and $f(g(x))=(g(x))^{2}$ for every real number x ?

