AoPS Community

Greece National Olympiad 2007

www.artofproblemsolving.com/community/c5187
by barasawala

- \quad Seniors
$1 \quad$ Find all positive integers n such that $4^{n}+2007$ is a perfect square.
2 Let a, b, c be sides of a triangle, show that

$$
\frac{(c+a-b)^{4}}{a(a+b-c)}+\frac{(a+b-c)^{4}}{b(b+c-a)}+\frac{(b+c-a)^{4}}{c(c+a-b)} \geq a b+b c+c a .
$$

3 In a circular ring with radii $11 r$ and $9 r$, we put circles of radius r which are tangent to the boundary circles and do not overlap. Determine the maximum number of circles that can be put this way. (You may use that $9.94<\sqrt{99}<9.95$)

4 Given a 2007×2007 array of numbers 1 and -1 , let A_{i} denote the product of the entries in the i th row, and B_{j} denote the product of the entries in the j th column. Show that

$$
A_{1}+A_{2}+\cdots+A_{2007}+B_{1}+B_{2}+\cdots+B_{2007} \neq 0
$$

