AoPS Community

Greece National Olympiad 2008

www.artofproblemsolving.com/community/c5188
by Amir Hossein

1 A computer generates all pairs of real numbers $x, y \in(0,1)$ for which the numbers $a=x+m y$ and $b=y+m x$ are both integers, where m is a given positive integer. Finding one such pair (x, y) takes 5 seconds. Find m if the computer needs 595 seconds to find all possible ordered pairs (x, y).
$2 \quad$ Find all integers x and prime numbers p satisfying $x^{8}+2^{2^{x}+2}=p$.
3 A triangle $A B C$ with orthocenter H is inscribed in a circle with center K and radius 1, where the angles at B and C are non-obtuse. If the lines $H K$ and $B C$ meet at point S such that $S K(S K-S H)=1$, compute the area of the concave quadrilateral $A B H C$.

4 If $a_{1}, a_{2}, \ldots, a_{n}$ are positive integers and $k=\max \left\{a_{1}, \ldots, a_{n}\right\}, t=\min \left\{a_{1}, \ldots, a_{n}\right\}$, prove the inequality

$$
\left(\frac{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}{a_{1}+a_{2}+\cdots+a_{n}}\right)^{\frac{k n}{t}} \geq a_{1} a_{2} \cdots a_{n}
$$

When does equality hold?

