AoPS Community

Greece National Olympiad 2010

www.artofproblemsolving.com/community/c5190
by stergiu

1 Solve in the integers the diophantine equation

$$
x^{4}-6 x^{2}+1=7 \cdot 2^{y} .
$$

2 If x, y are positive real numbers with sum $2 a$, prove that :
$x^{3} y^{3}\left(x^{2}+y^{2}\right)^{2} \leq 4 a^{10}$
When does equality hold?
Babis
3 A triangle $A B C$ is inscribed in a circle $C(O, R)$ and has incenter I. Lines $A I, B I, C I$ meet the circumcircle (O) of triangle $A B C$ at points D, E, F respectively. The circles with diameter $I D, I E, I F$ meet the sides $B C, C A, A B$ at pairs of points $\left(A_{1}, A_{2}\right),\left(B_{1}, B_{2}\right),\left(C_{1}, C_{2}\right)$ respectively.

Prove that the six points $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ are concyclic.

Babis
4 On the plane are given $k+n$ distinct lines, where $k>1$ is integer and n is integer as well.Any three of these lines do not pass through the
same point. Among these lines exactly k are parallel and all the other n lines intersect each other.All $k+n$ lines define on the plane a partition
of triangular, polygonic or not bounded regions. Two regions are colled different, if the have not common points
or if they have common points only on their boundary. A regions is called "good" if it contained in a zone between two parallel lines .

If in a such given configuration the minimum number of "good" regionrs is 176 and the maximum number of these regions is 221 , find k and n.

Babis

