AoPS Community

Greece National Olympiad 2011

www.artofproblemsolving.com/community/c5191
by Eukleidis, chris!!!

1 Solve in integers the equation

$$
x^{3} y^{2}(2 y-x)=x^{2} y^{4}-36
$$

2 In the Cartesian plane $O x y$ we consider the points $A_{1}(40,1), A_{2}(40,2), \ldots, A_{40}(40,40)$ as well as the segments $O A_{1}, O A_{2}, \ldots, O A_{40}$. A point of the Cartesian plane $O x y$ is called "good", if its coordinates are integers and it is internal of one segment $O A_{i}, i=1,2,3, \ldots, 40$. Additionally, one of the segments $O A_{1}, O A_{2}, \ldots, O A_{40}$ is called "good" if it contains a "good" point. Find the number of "good" segments and "good" points.

3 Let a, b, c be positive real numbers with sum 6 . Find the maximum value of

$$
S=\sqrt[3]{a^{2}+2 b c}+\sqrt[3]{b^{2}+2 c a}+\sqrt[3]{c^{2}+2 a b}
$$

4 We consider an acute angled triangle $A B C$ (with $A B<A C$) and its circumcircle $c(O, R)$ (with center O and semidiametre R). The altitude $A D$ cuts the circumcircle at the point E, while the perpedicular bisector (m) of the segment $A B$, cuts $A D$ at the point $L . B L$ cuts $A C$ at the point M and the circumcircle $c(O, R)$ at the point N.Finally $E N$ cuts the perpedicular bisector (m) at the point Z. Prove that:

$$
M Z \perp B C \Longleftrightarrow(C A=C B \text { or } Z \equiv O)
$$

