## AoPS Community

## Greece National Olympiad 2012

www.artofproblemsolving.com/community/c5192
by chris!!!

1 Let positive integers $p, q$ with $\operatorname{gcd}(p, q)=1$ such as $p+q^{2}=\left(n^{2}+1\right) p^{2}+q$. If the parameter $n$ is a positive integer, find all possible couples $(p, q)$.

2 Find all the non-zero polynomials $P(x), Q(x)$ with real coefficients and the minimum degree, such that for all $x \in \mathbb{R}$ :

$$
P\left(x^{2}\right)+Q(x)=P(x)+x^{5} Q(x)
$$

3 Let an acute-angled triangle $A B C$ with $A B<A C<B C$, inscribed in circle $c(O, R)$. The angle bisector $A D$ meets $c(O, R)$ at $K$. The circle $c_{1}\left(O_{1}, R_{1}\right)$ (which passes from $A, D$ and has its center $O_{1}$ on $O A$ ) meets $A B$ at $E$ and $A C$ at $Z$. If $M, N$ are the midpoints of $Z C$ and $B E$ respectively, prove that:
a)the lines $Z E, D M, K C$ are concurrent at one point $T$.
b)the lines $Z E, D N, K B$ are concurrent at one point $X$.
c) $O K$ is the perpendicular bisector of $T X$.

4 The following isosceles trapezoid consists of equal equilateral triangles with side length 1. The side $A_{1} E$ has length 3 while the larger base $A_{1} A_{n}$ has length $n-1$. Starting from the point $A_{1}$ we move along the segments which are oriented to the right and up(obliquely right or left). Calculate (in terms of $n$ or not) the number of all possible paths we can follow, in order to arrive at points $B, \Gamma, \Delta, E$, if $n$ is an integer greater than 3 .
[Need image]

