AoPS Community

Greece National Olympiad 2013

www.artofproblemsolving.com/community/c5193
by chris!!!

1 Let the sequence of real numbers $\left(a_{n}\right), n=1,2,3 \ldots$ with $a_{1}=2$ and $a_{n}=\left(\frac{n+1}{n-1}\right)\left(a_{1}+a_{2}+\ldots+a_{n-1}\right), n \geq$ 2.

Find the term a_{2013}.
2 Solve in integers the following equation:

$$
y=2 x^{2}+5 x y+3 y^{2}
$$

3 We define the sets $A_{1}, A_{2}, \ldots, A_{160}$ such that $\left|A_{i}\right|=i$ for all $i=1,2, \ldots, 160$. With the elements of these sets we create new sets $M_{1}, M_{2}, \ldots M_{n}$ by the following procedure: in the first step we choose some of the sets $A_{1}, A_{2}, \ldots, A_{160}$ and we remove from each of them the same number of elements. These elements that we removed are the elements of M_{1}. In the second step we repeat the same procedure in the sets that came of the implementation of the first step and so we define M_{2}. We continue similarly until there are no more elements in $A_{1}, A_{2}, \ldots, A_{160}$, thus defining the sets $M_{1}, M_{2}, \ldots, M_{n}$. Find the minimum value of n.

4 Let a triangle $A B C$ inscribed in circle $c(O, R)$ and D an arbitrary point on $B C$ (different from the midpoint).The circumscribed circle of $B O D$, which is $\left(c_{1}\right)$, meets $c(O, R)$ at K and $A B$ at Z. The circumscribed circle of $C O D\left(c_{2}\right)$,meets $c(O, R)$ at M and $A C$ at E.Finally, the circumscribed circle of $A E Z\left(c_{3}\right)$,meets $c(O, R)$ at N.Prove that $\triangle A B C=\triangle K M N$.

