

AoPS Community

Greece National Olympiad 2013

www.artofproblemsolving.com/community/c5193 by chris!!!

- 1 Let the sequence of real numbers (a_n) , n = 1, 2, 3... with $a_1 = 2$ and $a_n = \left(\frac{n+1}{n-1}\right) (a_1 + a_2 + ... + a_{n-1})$, $n \ge 2$. Find the term a_{2013} .
- **2** Solve in integers the following equation:

$$y = 2x^2 + 5xy + 3y^2$$

- **3** We define the sets $A_1, A_2, ..., A_{160}$ such that $|A_i| = i$ for all i = 1, 2, ..., 160. With the elements of these sets we create new sets $M_1, M_2, ..., M_n$ by the following procedure: in the first step we choose some of the sets $A_1, A_2, ..., A_{160}$ and we remove from each of them the same number of elements. These elements that we removed are the elements of M_1 . In the second step we repeat the same procedure in the sets that came of the implementation of the first step and so we define M_2 . We continue similarly until there are no more elements in $A_1, A_2, ..., A_{160}$, thus defining the sets $M_1, M_2, ..., M_n$. Find the minimum value of n.
- 4 Let a triangle *ABC* inscribed in circle c(O, R) and *D* an arbitrary point on *BC*(different from the midpoint). The circumscribed circle of *BOD*, which is (c_1) , meets c(O, R) at *K* and *AB* at *Z*. The circumscribed circle of *COD* (c_2) , meets c(O, R) at *M* and *AC* at *E*. Finally, the circumscribed circle of *AEZ* (c_3) , meets c(O, R) at *N*. Prove that $\triangle ABC = \triangle KMN$.

Art of Problem Solving is an ACS WASC Accredited School.