AoPS Community

Greece National Olympiad 2014

www.artofproblemsolving.com/community/c5194
by gavrilos, silouan

1 Find all the polynomials with real coefficients which satisfy $\left(x^{2}-6 x+8\right) P(x)=\left(x^{2}+2 x\right) P(x-2)$ for all $x \in \mathbb{R}$.

2 Find all the integers n for which $\frac{8 n-25}{n+5}$ is cube of a rational number.
3 For even positive integer n we put all numbers $1,2, \ldots, n^{2}$ into the squares of an $n \times n$ chessboard (each number appears once and only once).
Let S_{1} be the sum of the numbers put in the black squares and S_{2} be the sum of the numbers put in the white squares. Find all n such that we can achieve $\frac{S_{1}}{S_{2}}=\frac{39}{64}$.

4 We are given a circle $c(O, R)$ and two points A, B so that $R<A B<2 R$. The circle $c_{1}(A, r)$ ($0<r<R$) crosses the circle c at C,D (C belongs to the short arc $A B$). From B we consider the tangent lines $B E, B F$ to the circle c_{1}, in such way that E lays out of the circle c.If $M \equiv E C \cap D F$ show that the quadrilateral $B C F M$ is cyclic.

