

AoPS Community

2001 China Western Mathematical Olympiad

Western Mathematical Olympiad 2001

www.artofproblemsolving.com/community/c5195 by orl

Day 1

1	The sequence $\{x_n\}$ satisfies $x_1 = \frac{1}{2}, x_{n+1} = x_n + \frac{x_n^2}{n^2}$. Prove that $x_{2001} < 1001$.
2	$ABCD$ is a rectangle of area 2. P is a point on side CD and Q is the point where the incircle of $\triangle PAB$ touches the side AB . The product $PA \cdot PB$ varies as $ABCD$ and P vary. When $PA \cdot PB$ attains its minimum value,
	a) Prove that $AB \ge 2BC$, b) Find the value of $AQ \cdot BQ$.
3	Let n, m be positive integers of different parity, and $n > m$. Find all integers x such that $\frac{x^{2^n}-1}{x^{2^m}-1}$ is a perfect square.
4	Let x, y, z be real numbers such that $x + y + z \ge xyz$. Find the smallest possible value of $\frac{x^2+y^2+z^2}{xyz}$.
Day 2	
1	Find all real numbers x such that $\lfloor x^3 \rfloor = 4x + 3$.
2	<i>P</i> is a point on the exterior of a circle centered at <i>O</i> . The tangents to the circle from <i>P</i> touch the circle at <i>A</i> and <i>B</i> . Let <i>Q</i> be the point of intersection of <i>PO</i> and <i>AB</i> . Let <i>CD</i> be any chord of the circle passing through <i>Q</i> . Prove that $\triangle PAB$ and $\triangle PCD$ have the same incentre.
3	Find, with proof, all real numbers $x \in [0, \frac{\pi}{2}]$, such that $(2 - \sin 2x) \sin(x + \frac{\pi}{4}) = 1$.
4	We call A_1, A_2, \ldots, A_n an <i>n</i> -division of A if
	(i) $A_1 \cap A_2 \cap \dots \cap A_n = A$, (ii) $A_i \cap A_j \neq \emptyset$.
	Find the smallest positive integer <i>m</i> such that for any 14-division A_1, A_2, \ldots, A_{14} of $A = \{1, 2, \ldots, n\}$ there exists a set A_i ($1 \le i \le 14$) such that there are two elements a, b of A_i such that $b < a \le \frac{4}{3}b$.

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱