

AoPS Community

2002 China Western Mathematical Olympiad

Western Mathematical Olympiad 2002

www.artofproblemsolving.com/community/c5196 by Fang-jh, April

Day 1	
1	Find all positive integers n such that $n^4 - 4n^3 + 22n^2 - 36n + 18$ is a perfect square.
2	Let <i>O</i> be the circumcenter of acute triangle <i>ABC</i> . Point <i>P</i> is in the interior of triangle <i>AOB</i> . Let D, E, F be the projections of <i>P</i> on the sides <i>BC</i> , <i>CA</i> , <i>AB</i> , respectively. Prove that the parallelogram consisting of <i>FE</i> and <i>FD</i> as its adjacent sides lies inside triangle <i>ABC</i> .
3	In the complex plane, consider squares having the following property: the complex numbers its vertex correspond to are exactly the roots of integer coefficients equation $x^4 + px^3 + qx^2 + rx + s = 0$. Find the minimum of square areas.
4	Let <i>n</i> be a positive integer, let the sets A_1, A_2, \dots, A_{n+1} be non-empty subsets of the set $\{1, 2, \dots, n\}$. prove that there exist two disjoint non-empty subsets of the set $\{1, 2, \dots, n+1\}$: $\{i_1, i_2, \dots, i_k\}$ and $\{j_1, j_2, \dots, j_m\}$ such that $A_{i_1} \cup A_{i_2} \cup \dots \cup A_{i_k} = A_{j_1} \cup A_{j_2} \cup \dots \cup A_{j_m}$.
Day 2	
1	Given a trapezoid $ABCD$ with $AD \parallel BC, E$ is a moving point on the side AB , let O_1, O_2 be the circumcenters of triangles AED, BEC , respectively. Prove that the length of O_1O_2 is a constant value.
2	Given a positive integer n , find all integers (a_1, a_2, \dots, a_n) satisfying the following conditions: (1): $a_1 + a_2 + \dots + a_n \ge n^2$; (2): $a_1^2 + a_2^2 + \dots + a_n^2 \le n^3 + 1$.
3	Assume that α and β are two roots of the equation: $x^2 - x - 1 = 0$. Let $a_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$, $n = 1, 2, \cdots$. (1) Prove that for any positive integer n , we have $a_{n+2} = a_{n+1} + a_n$. (2) Find all positive integers a and b , $a < b$, satisfying $b \mid a_n - 2na^n$ for any positive integer n .
4	Assume that $S = (a_1, a_2, \dots, a_n)$ consists of 0 and 1 and is the longest sequence of number, which satisfies the following condition: Every two sections of successive 5 terms in the sequence of numbers S are different, i.e., for arbitrary $1 \le i < j \le n - 4$, $(a_i, a_{i+1}, a_{i+2}, a_{i+3}, a_{i+4})$ and $(a_j, a_{j+1}, a_{j+2}, a_{j+3}, a_{j+4})$ are different. Prove that the first four terms and the last four terms in the sequence are the same.

AoPS Online 🔯 AoPS Academy 🔯 AoPS & Cademy