Art of Problem Solving

AoPS Community

Western Mathematical Olympiad 2002

www.artofproblemsolving.com/community/c5196
by Fang-jh, April

Day 1

$1 \quad$ Find all positive integers n such that $n^{4}-4 n^{3}+22 n^{2}-36 n+18$ is a perfect square.
2 Let O be the circumcenter of acute triangle $A B C$. Point P is in the interior of triangle $A O B$. Let D, E, F be the projections of P on the sides $B C, C A, A B$, respectively. Prove that the parallelogram consisting of $F E$ and $F D$ as its adjacent sides lies inside triangle $A B C$.

3 In the complex plane, consider squares having the following property: the complex numbers its vertex correspond to are exactly the roots of integer coefficients equation $x^{4}+p x^{3}+q x^{2}+$ $r x+s=0$. Find the minimum of square areas.

4 Let n be a positive integer, let the sets $A_{1}, A_{2}, \cdots, A_{n+1}$ be non-empty subsets of the set $\{1,2, \cdots, n\}$. prove that there exist two disjoint non-empty subsets of the set $\{1,2, \cdots, n+1\}$: $\left\{i_{1}, i_{2}, \cdots, i_{k}\right\}$ and $\left\{j_{1}, j_{2}, \cdots, j_{m}\right\}$ such that $A_{i_{1}} \cup A_{i_{2}} \cup \cdots \cup A_{i_{k}}=A_{j_{1}} \cup A_{j_{2}} \cup \cdots \cup A_{j_{m}}$.

Day 2

1 Given a trapezoid $A B C D$ with $A D \| B C, E$ is a moving point on the side $A B$, let O_{1}, O_{2} be the circumcenters of triangles $A E D, B E C$, respectively. Prove that the length of $O_{1} O_{2}$ is a constant value.

2 Given a positive integer n, find all integers $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ satisfying the following conditions: (1) : $a_{1}+a_{2}+\cdots+a_{n} \geq n^{2}$; (2) : $a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \leq n^{3}+1$.

3 Assume that α and β are two roots of the equation: $x^{2}-x-1=0$. Let $a_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, n=1,2, \cdots$.
(1) Prove that for any positive integer n, we have $a_{n+2}=a_{n+1}+a_{n}$.
(2) Find all positive integers a and $b, a<b$, satisfying $b \mid a_{n}-2 n a^{n}$ for any positive integer n.

4 Assume that $S=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ consists of 0 and 1 and is the longest sequence of number, which satisfies the following condition: Every two sections of successive 5 terms in the sequence of numbers S are different, i.e., for arbitrary $1 \leq i<j \leq n-4,\left(a_{i}, a_{i+1}, a_{i+2}, a_{i+3}, a_{i+4}\right)$ and $\left(a_{j}, a_{j+1}, a_{j+2}, a_{j+3}, a_{j+4}\right)$ are different. Prove that the first four terms and the last four terms in the sequence are the same.

