Art of Problem Solving

AoPS Community

Saint Petersburg Mathematical Olympiad 2009
www.artofproblemsolving.com/community/c519647
by RagvaloD

- \quad Grade 11

$1 \quad f(x)=a x^{2}+b x+c ; a, b, c$ are reals. $M=\{f(2 n) \mid n$ is integer $\}, N=\{f(2 n+1) \mid n$ is integer $\}$
Prove that $M=N$ or $M \cap N=\varnothing$
$2 \quad[x, y]-[x, z]=y-z$ and $x \neq y \neq z \neq x$
Prove, that $x|y, x| z$
3 Streets of Moscow are some circles (rings) with common center O and some straight lines from center O to external ring. Point A, B-two crossroads on external ring. Three friends want to move from A to B. Dima goes by external ring, Kostya goes from A to O then to B. Sergey says, that there is another way, that is shortest. Prove, that he is wrong.

4 From 2008×2008 square we remove one corner cell 1×1. Is number of ways to divide this figure to corners from 3 cells odd or even?
$5 \quad O$-circumcenter of $A B C D . A C$ and $B D$ intersect in $E, A D$ and $B C$ in $F . X, Y$ - midpoints of $A D$ and BC. O_{1}-circumcenter of $E X Y$. Prove that $O F \| O_{1} E$

6 Some cities in country are connected by road, and from every city goes ≥ 2008 roads. Every road is colored in one of two colors. Prove, that exists cycle without self-intersections ,where ≥ 504 roads and all roads are same color.
$7 \quad f(x)=x^{2}+x b_{1}, \ldots, b_{10000}>0$ and $\left|b_{n+1}-f\left(b_{n}\right)\right| \leq \frac{1}{1000}$ for $n=1, \ldots, 9999$
Prove, that there is such $a_{1}>0$ that $a_{n+1}=f\left(a_{n}\right) ; n=1, \ldots, 9999$ and $\left|a_{n}-b_{n}\right|<\frac{1}{100}$

- Grade 10
$1 x, y$ are naturals. $G C M\left(x^{7}, y^{4}\right) * G C M\left(x^{8}, y^{5}\right)=x y$ Prove that $x y$ is cube
$2 A B C D$ is convex quadrilateral with $A B=C D . A C$ and $B D$ intersect in $O . X, Y, Z, T$ are midpoints of $B C, A D, A C, B D$. Prove, that circumcenter of $O Z T$ lies on $X Y$.
$3 f(x), g(x), h(x)$ are square trinomials with discriminant, that equals 2. And $f(x)+g(x), f(x)+$ $h(x), g(x)+h(x)$ are square trinomials with discriminant, that equals 1. Prove,that $f(x)+g(x)+$ $h(x)$ has not roots.

AoPS Community

4 Same as Grade 11 P3

$5 \quad$ Call a set of some cells in infinite chess field as board. Set of rooks on the board call as awesome if no one rook can beat another, but every empty cell is under rook attack. There are awesome set with 2008 rooks and with 2010 rooks. Prove, that there are awesome set with 2009 rooks.
$6 \quad\left(x_{n}\right)$ is sequence, such that $x_{n+2}=\left|x_{n+1}\right|-x_{n}$. Prove, that it is periodic.
7 Points Y, X lies on $A B, B C$ of $\triangle A B C$ and X, Y, A, C are concyclic. $A X$ and $C Y$ intersect in O. Points M, N are midpoints of $A C$ and $X Y$. Prove, that $B O$ is tangent to circumcircle of $\triangle M O N$

- \quad Grade 9

$1 \quad b, c$ are naturals. $b \mid c+1$ Prove that exists such natural x, y, z that $x+y=b z, x y=c z$
2 There are 40 members of jury, that want to choose problem for contest. There are list with 30 problems. They want to find such problem, that can be solved at least half members , but not all. Every member solved 26 problems, and every two members solved different sets of problems.
Prove, that they can find problem for contest.
3 Same as Grade 11,P2
4 Points A_{1} and C_{1} are on $B C$ and $A B$ of acute-angled triangle $A B C . A A_{1}$ and $C C_{1}$ intersect in K. Circumcircles of $A A_{1} B, C C_{1} B$ intersect in P - incenter of $A K C$.
Prove, that P - orthocenter of $A B C$
$5 A B C$ is acute-angled triangle. $A A_{1}, B B_{1}, C C_{1}$ are altitudes. X, Y - midpoints of $A C_{1}, A_{1} C$. $X Y=B B_{1}$.
Prove that one side of $A B C$ in $\sqrt{2}$ greater than other side.

6 Same as Grade 10,P5

7 Discriminants of square trinomials $f(x), g(x), h(x), f(x)+g(x), f(x)+h(x), g(x)+h(x)$ equals 1.

Prove that $f(x)+h(x)+g(x) \equiv 0$

