## AoPS Community

## Western Mathematical Olympiad 2004

www.artofproblemsolving.com/community/c5198
by Valentin Vornicu, mecrazywong

## Day 1

1 Find all integers $n$, such that the following number is a perfect square

$$
N=n^{4}+6 n^{3}+11 n^{2}+3 n+31 .
$$

2 Let $A B C D$ be a convex quadrilateral, $I_{1}$ and $I_{2}$ be the incenters of triangles $A B C$ and $D B C$ respectively. The line $I_{1} I_{2}$ intersects the lines $A B$ and $D C$ at points $E$ and $F$ respectively. Given that $A B$ and $C D$ intersect in $P$, and $P E=P F$, prove that the points $A, B, C, D$ lie on a circle.

3 Find all reals $k$ such that

$$
a^{3}+b^{3}+c^{3}+d^{3}+1 \geq k(a+b+c+d)
$$

holds for all $a, b, c, d \geq-1$.
Edited by orl.
$4 \quad$ Let $\mathbb{N}$ be the set of positive integers. Let $n \in \mathbb{N}$ and let $d(n)$ be the number of divisors of $n$. Let $\varphi(n)$ be the Euler-totient function (the number of co-prime positive integers with $n$, smaller than $n$ ).

Find all non-negative integers $c$ such that there exists $n \in \mathbb{N}$ such that

$$
d(n)+\varphi(n)=n+c,
$$

and for such $c$ find all values of $n$ satisfying the above relationship.

## Day 2

1 The sequence $\left\{a_{n}\right\}_{n}$ satisfies the relations $a_{1}=a_{2}=1$ and for all positive integers $n$,

$$
a_{n+2}=\frac{1}{a_{n+1}}+a_{n} .
$$

Find $a_{2004}$.

## AoPS Community

2 All the grids of a $m \times n$ chess board ( $m, n \geq 3$ ), are colored either with red or with blue. Two adjacent grids (having a common side) are called a "good couple" if they have different colors. Suppose there are $S$ "good couples". Explain how to determine whether $S$ is odd or even. Is it prescribed by
some specific color grids? Justify your answers.
3 Let $\ell$ be the perimeter of an acute-angled triangle $A B C$ which is not an equilateral triangle. Let $P$ be a variable points inside the triangle $A B C$, and let $D, E, F$ be the projections of $P$ on the sides $B C, C A, A B$ respectively. Prove that

$$
2(A F+B D+C E)=\ell
$$

if and only if $P$ is collinear with the incenter and the circumcenter of the triangle $A B C$.
4 Suppose that $a, b, c$ are positive real numbers, prove that

$$
1<\frac{a}{\sqrt{a^{2}+b^{2}}}+\frac{b}{\sqrt{b^{2}+c^{2}}}+\frac{c}{\sqrt{c^{2}+a^{2}}} \leq \frac{3 \sqrt{2}}{2}
$$

