

AoPS Community

2004 China Western Mathematical Olympiad

Western Mathematical Olympiad 2004

www.artofproblemsolving.com/community/c5198

by Valentin Vornicu, mecrazywong

Day 1	
1	Find all integers n , such that the following number is a perfect square
	$N = n^4 + 6n^3 + 11n^2 + 3n + 31.$
2	Let $ABCD$ be a convex quadrilateral, I_1 and I_2 be the incenters of triangles ABC and DBC respectively. The line I_1I_2 intersects the lines AB and DC at points E and F respectively. Given that AB and CD intersect in P , and $PE = PF$, prove that the points A , B , C , D lie on a circle.
3	Find all reals k such that
	$a^{3} + b^{3} + c^{3} + d^{3} + 1 \ge k(a + b + c + d)$
	holds for all $a, b, c, d \ge -1$.
	Edited by orl.
4	Let \mathbb{N} be the set of positive integers. Let $n \in \mathbb{N}$ and let $d(n)$ be the number of divisors of n . Let $\varphi(n)$ be the Euler-totient function (the number of co-prime positive integers with n , smaller than n).
	Find all non-negative integers c such that there exists $n \in \mathbb{N}$ such that
	$d(n) + \varphi(n) = n + c,$
	and for such c find all values of n satisfying the above relationship.
Day 2	
1	The sequence $\{a_n\}_n$ satisfies the relations $a_1 = a_2 = 1$ and for all positive integers n ,
	$a_{n+2} = \frac{1}{a_{n+1}} + a_n.$
	Find a_{2004} .

AoPS Community

2004 China Western Mathematical Olympiad

2 All the grids of a $m \times n$ chess board $(m, n \ge 3)$, are colored either with red or with blue. Two adjacent grids (having a common side) are called a "good couple" if they have different colors. Suppose there are *S* "good couples". Explain how to determine whether *S* is odd or even. Is it prescribed by

some specific color grids? Justify your answers.

3 Let ℓ be the perimeter of an acute-angled triangle ABC which is not an equilateral triangle. Let P be a variable points inside the triangle ABC, and let D, E, F be the projections of P on the sides BC, CA, AB respectively. Prove that

$$2(AF + BD + CE) = \ell$$

if and only if *P* is collinear with the incenter and the circumcenter of the triangle *ABC*.

4 Suppose that *a*, *b*, *c* are positive real numbers, prove that

$$1 < \frac{a}{\sqrt{a^2 + b^2}} + \frac{b}{\sqrt{b^2 + c^2}} + \frac{c}{\sqrt{c^2 + a^2}} \le \frac{3\sqrt{2}}{2}$$

Act of Problem Solving is an ACS WASC Accredited School.