

AoPS Community

2005 China Western Mathematical Olympiad

Western Mathematical Olympiad 2005

www.artofproblemsolving.com/community/c5199

by zhaoli, enescu, Chang Woo-JIn, tt, MysticTerminator, Skyward_Sea, nttu

Day 1 November 5th

1	It is known that $a^{2005} + b^{2005}$ can be expressed as the polynomial of $a + b$ and ab . Find the coefficients' sum of this polynomial.
2	Given three points P , A , B and a circle such that the lines PA and PB are tangent to the circle at the points A and B , respectively. A line through the point P intersects that circle at two points C and D . Through the point B , draw a line parallel to PA ; let this line intersect the lines AC and AD at the points E and F , respectively. Prove that $BE = BF$.

- **3** Set $S = \{1, 2, 3, ..., 2005\}$. If among any *n* pairwise coprime numbers in *S* there exists at least a prime number, find the minimum of *n*.
- **4** Given is the positive integer n > 2. Real numbers $|x_i| \le 1$ (i = 1, 2, ..., n) satisfying $|\sum_{i=1}^n x_i| > 1$. Prove that there exists positive integer k such that $|\sum_{i=1}^k x_i \sum_{i=k+1}^n x_i| \le 1$.

Day 2 November 6th

- **5** Circles $C(O_1)$ and $C(O_2)$ intersect at points A, B. CD passing through point O_1 intersects $C(O_1)$ at point D and tangents $C(O_2)$ at point C. AC tangents $C(O_1)$ at A. Draw $AE \perp CD$, and AE intersects $C(O_1)$ at E. Draw $AF \perp DE$, and AF intersects DE at F. Prove that BD bisects AF.
- 6 In isosceles right-angled triangle *ABC*, CA = CB = 1. *P* is an arbitrary point on the sides of *ABC*. Find the maximum of $PA \cdot PB \cdot PC$.
- 7 If a, b, c are positive reals such that a + b + c = 1, prove that

$$10(a^3 + b^3 + c^3) - 9(a^5 + b^5 + c^5) \ge 1.$$

8 For *n* people, if it is known that

- (a) there exist two people knowing each other among any three people, and
- (b) there exist two people not knowing each other among any four people.

AoPS Community

Find the maximum of *n*.

Here, we assume that if *A* knows *B*, then *B* knows *A*.

Act of Problem Solving is an ACS WASC Accredited School.