Art of Problem Solving

AoPS Community

Western Mathematical Olympiad 2005

www.artofproblemsolving.com/community/c5199
by zhaoli, enescu, Chang Woo-JIn, tt, MysticTerminator, Skyward_Sea, nttu

Day 1 November 5th

1 It is known that $a^{2005}+b^{2005}$ can be expressed as the polynomial of $a+b$ and $a b$. Find the coefficients' sum of this polynomial.

2 Given three points P, A, B and a circle such that the lines $P A$ and $P B$ are tangent to the circle at the points A and B, respectively. A line through the point P intersects that circle at two points C and D. Through the point B, draw a line parallel to $P A$; let this line intersect the lines $A C$ and $A D$ at the points E and F, respectively. Prove that $B E=B F$.

3 Set $S=\{1,2,3, \ldots, 2005\}$. If among any n pairwise coprime numbers in S there exists at least a prime number, find the minimum of n.

4 Given is the positive integer $n>2$. Real numbers $\left|x_{i}\right| \leq 1(i=1,2, \ldots, n)$ satisfying $\left|\sum_{i=1}^{n} x_{i}\right|>$ 1. Prove that there exists positive integer k such that $\left|\sum_{i=1}^{k} x_{i}-\sum_{i=k+1}^{n} x_{i}\right| \leq 1$.

Day 2 November 6th

5 Circles $C\left(O_{1}\right)$ and $C\left(O_{2}\right)$ intersect at points $A, B . C D$ passing through point O_{1} intersects $C\left(O_{1}\right)$ at point D and tangents $C\left(O_{2}\right)$ at point C. AC tangents $C\left(O_{1}\right)$ at A. Draw $A E \perp C D$, and $A E$ intersects $C\left(O_{1}\right)$ at E. Draw $A F \perp D E$, and $A F$ intersects $D E$ at F. Prove that $B D$ bisects $A F$.

6 In isosceles right-angled triangle $A B C, C A=C B=1 . P$ is an arbitrary point on the sides of $A B C$. Find the maximum of $P A \cdot P B \cdot P C$.

7 If a, b, c are positive reals such that $a+b+c=1$, prove that

$$
10\left(a^{3}+b^{3}+c^{3}\right)-9\left(a^{5}+b^{5}+c^{5}\right) \geq 1
$$

8 For n people, if it is known that
(a) there exist two people knowing each other among any three people, and
(b) there exist two people not knowing each other among any four people.

Find the maximum of n.
Here, we assume that if A knows B, then B knows A.

