Art of Problem Solving

AoPS Community

Western Mathematical Olympiad 2006

www.artofproblemsolving.com/community/c5200
by Jumbler

Day 1

1 Let n be a positive integer with $n \geq 2$, and $0<a_{1}, a_{2}, \ldots, a_{n}<1$. Find the maximum value of the sum $\sum_{i=1}^{n}\left(a_{i}\left(1-a_{i+1}\right)\right)^{\frac{1}{6}}$
where $a_{n+1}=a_{1}$
2 Find the smallest positive real k satisfying the following condition: for any given four DIFFERENT real numbers a, b, c, d, which are not less than k, there exists a permutation (p, q, r, s) of (a, b, c, d), such that the equation $\left(x^{2}+p x+q\right)\left(x^{2}+r x+s\right)=0$ has four different real roots.

3 In $\triangle P B C, \angle P B C=60^{\circ}$, the tangent at point P to the circumcircle g of $\triangle P B C$ intersects with line $C B$ at A. Points D and E lie on the line segment $P A$ and g respectively, satisfying $\angle D B E=90^{\circ}, P D=P E . B E$ and $P C$ meet at F. It is known that lines $A F, B P, C D$ are concurrent.
a) Prove that $B F$ bisect $\angle P B C$
b) Find $\tan \angle P C B$

4 Assuming that the positive integer a is not a perfect square, prove that for any positive integer n , the sum $S_{n}=\sum_{i=1}^{n}\left\{a^{\frac{1}{2}}\right\}^{i}$ is irrational.

Day 2

1 Let $S=\{n \mid n-1, n, n+1$ can be expressed as the sum of the square of two positive integers. $\}$. Prove that if n in S, n^{2} is also in S.
$2 A B$ is a diameter of the circle O, the point C lies on the line $A B$ produced. A line passing though C intersects with the circle O at the point D and E. $O F$ is a diameter of circumcircle O_{1} of $\triangle B O D$. Join $C F$ and produce, cutting the circle O_{1} at G. Prove that points O, A, E, G are concyclic.
$3 \quad$ Let k be a positive integer not less than 3 and x a real number. Prove that if $\cos (k-1) x$ and $\cos k x$ are rational, then there exists a positive integer $n>k$, such that both $\cos (n-1) x$ and $\cos n x$ are rational.

4 Given a positive integer $n \geq 2$, let $B_{1}, B_{2}, \ldots, B_{n}$ denote n subsets of a set X such that each B_{i} contains exactly two elements. Find the minimum value of $|X|$ such that for any such choice of subsets $B_{1}, B_{2}, \ldots, B_{n}$, there exists a subset Y of X such that:
(1) $|Y|=n$;
(2) $\left|Y \cap B_{i}\right| \leq 1$ for every $i \in\{1,2, \ldots, n\}$.

