

AoPS Community

2006 China Western Mathematical Olympiad

Western Mathematical Olympiad 2006

www.artofproblemsolving.com/community/c5200 by Jumbler

Day 1	
1	Let <i>n</i> be a positive integer with $n \ge 2$, and $0 < a_1, a_2,, a_n < 1$. Find the maximum value of the sum $\sum_{i=1}^{n} (a_i(1-a_{i+1}))^{\frac{1}{6}}$ where $a_{n+1} = a_1$
2	Find the smallest positive real k satisfying the following condition: for any given four DIFFER- ENT real numbers a, b, c, d , which are not less than k, there exists a permutation (p, q, r, s) of (a, b, c, d) , such that the equation $(x^2 + px + q)(x^2 + rx + s) = 0$ has four different real roots.
3	In $\triangle PBC$, $\angle PBC = 60^{\circ}$, the tangent at point <i>P</i> to the circumcircle <i>g</i> of $\triangle PBC$ intersects with line <i>CB</i> at <i>A</i> . Points <i>D</i> and <i>E</i> lie on the line segment <i>PA</i> and <i>g</i> respectively, satisfying $\angle DBE = 90^{\circ}$, $PD = PE$. <i>BE</i> and <i>PC</i> meet at <i>F</i> . It is known that lines <i>AF</i> , <i>BP</i> , <i>CD</i> are concurrent. a) Prove that <i>BF</i> bisect $\angle PBC$ b) Find tan $\angle PCB$
4	Assuming that the positive integer a is not a perfect square, prove that for any positive integer n, the sum $S_n = \sum_{i=1}^n \{a^{\frac{1}{2}}\}^i$ is irrational.
Day 2	2
1	Let $S = \{n n-1, n, n+1 \text{ can be expressed as the sum of the square of two positive integers.}\}$. Prove that if n in S , n^2 is also in S .
2	AB is a diameter of the circle O , the point C lies on the line AB produced. A line passing though C intersects with the circle O at the point D and E . OF is a diameter of circumcircle O_1 of $\triangle BOD$. Join CF and produce, cutting the circle O_1 at G . Prove that points O, A, E, G are concyclic.
3	Let k be a positive integer not less than 3 and x a real number. Prove that if $cos(k-1)x$ and $cos kx$ are rational, then there exists a positive integer $n > k$, such that both $cos(n-1)x$ and $cos nx$ are rational.
4	Given a positive integer $n \ge 2$, let $B_1, B_2,, B_n$ denote n subsets of a set X such that each B_i contains exactly two elements. Find the minimum value of $ X $ such that for any such choice of subsets $B_1, B_2,, B_n$, there exists a subset Y of X such that:

AoPS Community

2006 China Western Mathematical Olympiad

(1) |Y| = n; (2) $|Y \cap B_i| \le 1$ for every $i \in \{1, 2, ..., n\}$.

Act of Problem Solving is an ACS WASC Accredited School.