Art of Problem Solving

AoPS Community

Western Mathematical Olympiad 2009

www.artofproblemsolving.com/community/c5203
by horizon

Day 1

1 Let M be the set of the real numbers except for finitely many elements. Prove that for every positive integer n there exists a polynomial $f(x)$ with $\operatorname{deg} f=n$, such that all the coefficients and the n real roots of f are all in M.

2 Given an integer $n \geq 3$, find the least positive integer k, such that there exists a set A with k elements, and n distinct reals $x_{1}, x_{2}, \ldots, x_{n}$ such that $x_{1}+x_{2}, x_{2}+x_{3}, \ldots, x_{n-1}+x_{n}, x_{n}+x_{1}$ all belong to A.

3 Let H be the orthocenter of acute triangle $A B C$ and D the midpoint of $B C$. A line through H intersects $A B, A C$ at F, E respectively, such that $A E=A F$. The ray $D H$ intersects the circumcircle of $\triangle A B C$ at P. Prove that P, A, E, F are concyclic.

4 Prove that for every given positive integer k, there exist infinitely many n, such that $2^{n}+3^{n}-$ $1,2^{n}+3^{n}-2, \ldots, 2^{n}+3^{n}-k$ are all composite numbers.

Day 2

1 Define a sequence $\left(x_{n}\right)_{n \geq 1}$ by taking $x_{1} \in\{5,7\}$; when $k \geq 1, x_{k+1} \in\left\{5^{x_{k}}, 7^{x_{k}}\right\}$. Determine all possible last two digits of x_{2009}.

2 Given an acute triangle $A B C, D$ is a point on $B C$. A circle with diameter $B D$ intersects line $A B, A D$ at X, P respectively (different from B, D). The circle with diameter $C D$ intersects $A C, A D$ at Y, Q respectively (different from C, D). Draw two lines through A perpendicular to $P X, Q Y$, the feet are M, N respectively.Prove that $\triangle A M N$ is similar to $\triangle A B C$ if and only if $A D$ passes through the circumcenter of $\triangle A B C$.

3 A total of n people compete in a mathematical match which contains 15 problems where $n>$ 12. For each problem, 1 point is given for a right answer and 0 is given for a wrong answer. Analysing each possible situation, we find that if the sum of points every group of 12 people get is no less than 36 , then there are at least 3 people that got the right answer of a certain problem, among the n people. Find the least possible n.

4 The real numbers $a_{1}, a_{2}, \ldots, a_{n}$ where $n \geq 3$ are such that $\sum_{i=1}^{n} a_{i}=0$ and $2 a_{k} \leq a_{k-1}+a_{k+1}$ for all $k=2,3, \ldots, n-1$. Find the least $f(n)$ such that, for all $k \in\{1,2, \ldots, n\}$, we have $\left|a_{k}\right| \leq$ $f(n) \max \left\{\left|a_{1}\right|,\left|a_{n}\right|\right\}$.

