4th IGO

www.artofproblemsolving.com/community/c520386
by bgn

- Elementary Level

1 Each side of square $A B C D$ with side length of 4 is divided into equal parts by three points. Choose one of the three points from each side, and connect the points consecutively to obtain a quadrilateral. Which numbers can be the area of this quadrilateral? Just write the numbers without proof.

Proposed by Hirad Aalipanah
2 Find the angles of triangle $A B C$.

Proposed by Morteza Saghafian

3 In the regular pentagon $A B C D E$, the perpendicular at C to $C D$ meets $A B$ at F. Prove that $A E+A F=B E$.
Proposed by Alireza Cheraghi
$4 \quad P_{1}, P_{2}, \ldots, P_{100}$ are 100 points on the plane, no three of them are collinear. For each three points, call their triangle clockwise if the increasing order of them is in clockwise order. Can the number of clockwise triangles be exactly 2017?

Proposed by Morteza Saghafian
5 Intermediate level, problem 4(https://artofproblemsolving.com/community/u290969h1513413p89968

- Intermediate Level

1 Let $A B C$ be an acute-angled triangle with $A=60^{\circ}$. Let E, F be the feet of altitudes through B, C respectively. Prove that $C E-B F=\frac{3}{2}(A C-A B)$

Proposed by Fatemeh Sajadi
2 Two circles ω_{1}, ω_{2} intersect at A, B. An arbitrary line through B meets ω_{1}, ω_{2} at C, D respectively. The points E, F are chosen on ω_{1}, ω_{2} respectively so that $C E=C B, B D=D F$. Suppose that $B F$ meets ω_{1} at P, and $B E$ meets ω_{2} at Q. Prove that A, P, Q are collinear.
Proposed by Iman Maghsoudi

AoPS Community

2017 Iranian Geometry Olympiad

3 On the plane, n points are given $(n>2)$. No three of them are collinear. Through each two of them the line is drawn, and among the other given points, the one nearest to this line is marked (in each case this point occurred to be unique). What is the maximal possible number of marked points for each given n ?

Proposed by Boris Frenkin (Russia)
4 In the isosceles triangle $A B C(A B=A C)$, let l be a line parallel to $B C$ through A. Let D be an arbitrary point on l. Let E, F be the feet of perpendiculars through A to $B D, C D$ respectively. Suppose that P, Q are the images of E, F on l. Prove that $A P+A Q \leq A B$

Proposed by Morteza Saghafian

5 Let X, Y be two points on the side $B C$ of triangle $A B C$ such that $2 X Y=B C$ (X is between $B, Y)$. Let $A A^{\prime}$ be the diameter of the circumcirle of triangle $A X Y$. Let P be the point where $A X$ meets the perpendicular from B to $B C$, and Q be the point where $A Y$ meets the perpendicular from C to $B C$. Prove that the tangent line from A^{\prime} to the circumcircle of $A X Y$ passes through the circumcenter of triangle $A P Q$.
Proposed by Iman Maghsoudi

- Advanced Level

1 In triangle $A B C$, the incircle, with center I, touches the sides $B C$ at point D. Line $D I$ meets $A C$ at X. The tangent line from X to the incircle (different from $A C$) intersects $A B$ at Y. If $Y I$ and $B C$ intersect at point Z, prove that $A B=B Z$.

Proposed by Hooman Fattahimoghaddam
2 We have six pairwise non-intersecting circles that the radius of each is at least one (no circle lies in the interior of any other circle). Prove that the radius of any circle intersecting all the six circles, is at least one.

Proposed by Mohammad Ali Abam - Morteza Saghafian
3 Let O be the circumcenter of triangle $A B C$. Line $C O$ intersects the altitude from A at point K. Let P, M be the midpoints of $A K, A C$ respectively. If $P O$ intersects $B C$ at Y, and the circumcircle of triangle $B C M$ meets $A B$ at X, prove that $B X O Y$ is cyclic.
Proposed by Ali Daeinabi - Hamid Pardazi
4 Three circles $\omega_{1}, \omega_{2}, \omega_{3}$ are tangent to line l at points A, B, C (B lies between A, C) and ω_{2} is externally tangent to the other two. Let X, Y be the intersection points of ω_{2} with the other common external tangent of ω_{1}, ω_{3}. The perpendicular line through B to l meets ω_{2} again at Z. Prove that the circle with diameter $A C$ touches $Z X, Z Y$.

Proposed by Iman Maghsoudi - Siamak Ahmadpour
5 Sphere S touches a plane. Let A, B, C, D be four points on the plane such that no three of them are collinear. Consider the point A^{\prime} such that S in tangent to the faces of tetrahedron $A^{\prime} B C D$. Points $B^{\prime}, C^{\prime}, D^{\prime}$ are defined similarly. Prove that $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are coplanar and the plane $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ touches S.
Proposed by Alexey Zaslavsky (Russia)

