AoPS Community

Western Mathematical Olympiad 2010

www.artofproblemsolving.com/community/c5204
by chaotic_iak

1 Suppose that m and k are non-negative integers, and $p=2^{2^{m}}+1$ is a prime number. Prove that
(a) $2^{2^{m+1} p^{k}} \equiv 1\left(\bmod p^{k+1}\right)$;
(b) $2^{m+1} p^{k}$ is the smallest positive integer n satisfying the congruence equation $2^{n} \equiv 1\left(\bmod p^{k+1}\right)$.
$2 \quad A B$ is a diameter of a circle with center O. Let C and D be two different points on the circle on the same side of $A B$, and the lines tangent to the circle at points C and D meet at E. Segments $A D$ and $B C$ meet at F. Lines $E F$ and $A B$ meet at M. Prove that E, C, M and D are concyclic.

3 Determine all possible values of positive integer n, such that there are n different 3-element subsets $A_{1}, A_{2}, \ldots, A_{n}$ of the set $\{1,2, \ldots, n\}$, with $\left|A_{i} \cap A_{j}\right| \neq 1$ for all $i \neq j$.

4 Let $a_{1}, a_{2}, . ., a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ be non-negative numbers satisfying the following conditions simultaneously:
(1) $\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=1$;
(2) $\sum_{i=1}^{n} i\left(a_{i}-b_{i}\right)=0$;
(3) $\sum_{i=1}^{n} i^{2}\left(a_{i}+b_{i}\right)=10$.

Prove that $\max \left\{a_{k}, b_{k}\right\} \leq \frac{10}{10+k^{2}}$ for all $1 \leq k \leq n$.
$5 \quad$ Let k be an integer and $k>1$. Define a sequence $\left\{a_{n}\right\}$ as follows:
$a_{0}=0$,
$a_{1}=1$, and
$a_{n+1}=k a_{n}+a_{n-1}$ for $n=1,2, \ldots$
Determine, with proof, all possible k for which there exist non-negative integers $l, m(l \neq m)$ and positive integers p, q such that $a_{l}+k a_{p}=a_{m}+k a_{q}$.
$6 \Delta A B C$ is a right-angled triangle, $\angle C=90^{\circ}$. Draw a circle centered at B with radius $B C$. Let D be a point on the side $A C$, and $D E$ is tangent to the circle at E. The line through C perpendicular to $A B$ meets line $B E$ at F. Line $A F$ meets $D E$ at point G. The line through A parallel to $B G$ meets $D E$ at H. Prove that $G E=G H$.

7 There are $n(n \geq 3)$ players in a table tennis tournament, in which any two players have a match. Player A is called not out-performed by player B, if at least one of player A 's losers is not a B 's loser.

Determine, with proof, all possible values of n, such that the following case could happen: after finishing all the matches, every player is not out-performed by any other player.

8 Determine all possible values of integer k for which there exist positive integers a and b such that $\frac{b+1}{a}+\frac{a+1}{b}=k$.

