

AoPS Community

2011 China Western Mathematical Olympiad

Western Mathematical Olympiad 2011

www.artofproblemsolving.com/community/c5205 by fattypiggy123, thugzmath10

Day 1

1	Given that $0 < x, y < 1$, find the maximum value of $\frac{xy(1-x-y)}{(x+y)(1-x)(1-y)}$
2	Let <i>M</i> be a subset of $\{1, 2, 32011\}$ satisfying the following condition: For any three elements in <i>M</i> , there exist two of them <i>a</i> and <i>b</i> such that <i>a</i> <i>b</i> or <i>b</i> <i>a</i> . Determine the maximum value of $ M $ where $ M $ denotes the number of elements in <i>M</i>
3	Let $n \ge 2$ be a given integer a) Prove that one can arrange all the subsets of the set $\{1, 2, n\}$ as a sequence of subsets A_1, A_2, \dots, A_{2^n} , such that $ A_{i+1} = A_i + 1$ or $ A_i - 1$ where $i = a_{i+1}$
	$1, 2, 3, \cdots, 2^n$ and $A_{2^n+1} = A_1 b$) Determine all possible values of the sum $\sum_{i=1}^{2^n} (-1)^i S(A_i)$ where
	$S(A_i)$ denotes the sum of all elements in A_i and $S(\emptyset) = 0$, for any subset sequence A_1, A_2, \dots, A_2 satisfying the condition in a)
4	In a circle Γ_1 , centered at O , AB and CD are two unequal in length chords intersecting at E inside Γ_1 . A circle Γ_2 , centered at I is tangent to Γ_1 internally at F , and also tangent to AB at G and CD at H . A line l through O intersects AB and CD at P and Q respectively such that $EP = EQ$. The line EF intersects l at M . Prove that the line through M parallel to AB is tangent to Γ_1
Day 2	
1	Does there exist any odd integer $n \ge 3$ and n distinct prime numbers p_1, p_2, \dots, p_n such that all $p_i + p_{i+1} (i = 1, 2, \dots, n \text{ and } p_{n+1} = p_1)$ are perfect squares?
2	Let $a, b, c > 0$, prove that
	$\frac{(a-b)^2}{(c+a)(c+b)} + \frac{(b-c)^2}{(a+b)(a+c)} + \frac{(c-a)^2}{(b+c)(b+a)} \ge \frac{(a-b)^2}{a^2+b^2+c^2}$
3	In triangle ABC with $AB > AC$ and incenter I, the incircle touches BC, CA, AB at D, E, F

- respectively. *M* is the midpoint of *BC*, and the altitude at *A* meets *BC* at *H*. Ray *AI* meets lines DE and DF at *K* and *L*, respectively. Prove that the points M, L, H, K are concyclic.
- **4** Find all pairs of integers (a, b) such that $n|(a^n + b^{n+1})$ for all positive integer n

AoPS Online AoPS Academy AoPS Caster

Art of Problem Solving is an ACS WASC Accredited School.