Art of Problem Solving

## AoPS Community

## Western Mathematical Olympiad 2011

www.artofproblemsolving.com/community/c5205
by fattypiggy 123 , thugzmath10

## Day 1

1 Given that $0<x, y<1$, find the maximum value of $\frac{x y(1-x-y)}{(x+y)(1-x)(1-y)}$
2 Let $M$ be a subset of $\{1,2,3 \ldots 2011\}$ satisfying the following condition:
For any three elements in $M$, there exist two of them $a$ and $b$ such that $a \mid b$ or $b \mid a$.
Determine the maximum value of $|M|$ where $|M|$ denotes the number of elements in $M$
3 Let $n \geq 2$ be a given integer $a$ ) Prove that one can arrange all the subsets of the set $\{1,2 \ldots, n\}$ as a sequence of subsets $A_{1}, A_{2}, \cdots, A_{2^{n}}$, such that $\left|A_{i+1}\right|=\left|A_{i}\right|+1$ or $\left|A_{i}\right|-1$ where $i=$ $1,2,3, \cdots, 2^{n}$ and $\left.A_{2^{n}+1}=A_{1} b\right)$ Determine all possible values of the sum $\sum_{i=1}^{2^{n}}(-1)^{i} S\left(A_{i}\right)$ where $S\left(A_{i}\right)$ denotes the sum of all elements in $A_{i}$ and $S(\emptyset)=0$, for any subset sequence $A_{1}, A_{2}, \cdots, A_{2^{n}}$ satisfying the condition in $a$ )

4 In a circle $\Gamma_{1}$, centered at $O, A B$ and $C D$ are two unequal in length chords intersecting at $E$ inside $\Gamma_{1}$. A circle $\Gamma_{2}$, centered at $I$ is tangent to $\Gamma_{1}$ internally at $F$, and also tangent to $A B$ at $G$ and $C D$ at $H$. A line $l$ through $O$ intersects $A B$ and $C D$ at $P$ and $Q$ respectively such that $E P=E Q$. The line $E F$ intersects $l$ at $M$. Prove that the line through $M$ parallel to $A B$ is tangent to $\Gamma_{1}$

## Day 2

1 Does there exist any odd integer $n \geq 3$ and $n$ distinct prime numbers $p_{1}, p_{2}, \cdots p_{n}$ such that all $p_{i}+p_{i+1}\left(i=1,2, \cdots, n\right.$ and $\left.p_{n+1}=p_{1}\right)$ are perfect squares?

2 Let $a, b, c>0$, prove that

$$
\frac{(a-b)^{2}}{(c+a)(c+b)}+\frac{(b-c)^{2}}{(a+b)(a+c)}+\frac{(c-a)^{2}}{(b+c)(b+a)} \geq \frac{(a-b)^{2}}{a^{2}+b^{2}+c^{2}}
$$

3 In triangle $A B C$ with $A B>A C$ and incenter $I$, the incircle touches $B C, C A, A B$ at $D, E, F$ respectively. $M$ is the midpoint of $B C$, and the altitude at $A$ meets $B C$ at $H$. Ray $A I$ meets lines $D E$ and $D F$ at $K$ and $L$, respectively. Prove that the points $M, L, H, K$ are concyclic.

4 Find all pairs of integers $(a, b)$ such that $n \mid\left(a^{n}+b^{n+1}\right)$ for all positive integer $n$

