AoPS Community

Western Mathematical Olympiad 2012

www.artofproblemsolving.com/community/c5206
by sqing, fattypiggy123, parmenides51, yunxiu

Day 1

1 Find the smallest positive integer m satisfying the following condition: for all prime numbers p such that $p>3$,have $105 \mid 9^{p^{2}}-29^{p}+m$.
(September 28, 2012, Hohhot)
2 Show that among any $n \geq 3$ vertices of a regular ($2 n-1$)-gon we can find 3 of them forming an isosceles triangle.

3 Let A be a set of n elements and $A_{1}, A_{2}, \ldots A_{k}$ subsets of A such that for any 2 distinct subsets A_{i}, A_{j} either they are disjoint or one contains the other. Find the maximum value of k
$4 P$ is a point in the $\triangle A B C, \omega$ is the circumcircle of $\triangle A B C . B P \cap \omega=\left\{B, B_{1}\right\}, C P \cap \omega=\left\{C, C_{1}\right\}$, $P E \perp A C, P F \perp A B$. The radius of the inscribed circle and circumcircle of $\triangle A B C$ is r, R respectively. Prove that

$$
\frac{E F}{B_{1} C_{1}} \geq \frac{r}{R}
$$

https://cdn.artofproblemsolving.com/attachments/1/9/8b99561ba805c9e6fea33509440e256d84bf gif

Day 2

$1 O$ is the circumcenter of acute $\triangle A B C, H$ is the Orthocenter. $A D \perp B C, E F$ is the perpendicular bisector of $A O, D, E$ on the $B C$. Prove that the circumcircle of $\triangle A D E$ through the midpoint of OH.

2 Define a sequence $\left\{a_{n}\right\}$ by

$$
a_{0}=\frac{1}{2}, a_{n+1}=a_{n}+\frac{a_{n}^{2}}{2012},(n=0,1,2, \cdots)
$$

find integer k such that $a_{k}<1<a_{k+1}$.
(September 29, 2012, Hohhot)
3 Let n be a positive integer ≥ 2. Consider a n by n grid with all entries 1 . Define an operation on a square to be changing the signs of all squares adjacent to it but not the sign of its own. Find all n such that it is possible after a finite sequence of operations to reach a n by n grid with all entries -1

4 Find all prime number p, such that there exist an infinite number of positive integer n satisfying the following condition: $p \mid n^{n+1}+(n+1)^{n}$.
(September 29, 2012, Hohhot)

