

AoPS Community

2012 China Western Mathematical Olympiad

Western Mathematical Olympiad 2012

entries -1

www.artofproblemsolving.com/community/c5206 by sqing, fattypiggy123, parmenides51, yunxiu

Day 1	
1	Find the smallest positive integer m satisfying the following condition: for all prime numbers p such that $p > 3$, have $105 9^{p^2} - 29^p + m$. (September 28, 2012, Hohhot)
2	Show that among any $n \ge 3$ vertices of a regular $(2n-1)$ -gon we can find 3 of them forming an isosceles triangle.
3	Let <i>A</i> be a set of <i>n</i> elements and A_1, A_2,A_k subsets of <i>A</i> such that for any 2 distinct subsets A_i, A_j either they are disjoint or one contains the other. Find the maximum value of <i>k</i>
4	P is a point in the $\triangle ABC, \omega$ is the circumcircle of $\triangle ABC, BP \cap \omega = \{B, B_1\}, CP \cap \omega = \{C, C_1\}, PE \perp AC, PF \perp AB$. The radius of the inscribed circle and circumcircle of $\triangle ABC$ is r, R respectively. Prove that $\frac{EF}{B_1C_1} \geq \frac{r}{R}.$
	https://cdn.artofproblemsolving.com/attachments/1/9/8b99561ba805c9e6fea335094400 gif
Day 2	
1	<i>O</i> is the circumcenter of acute $\triangle ABC$, <i>H</i> is the Orthocenter. $AD \perp BC$, <i>EF</i> is the perpendicular bisector of <i>AO</i> , <i>D</i> , <i>E</i> on the <i>BC</i> . Prove that the circumcircle of $\triangle ADE$ through the midpoint of <i>OH</i> .
2	Define a sequence $\{a_n\}$ by
	$a_0 = \frac{1}{2}, \ a_{n+1} = a_n + \frac{a_n^2}{2012}, (n = 0, \ 1, \ 2, \ \cdots),$
	find integer k such that $a_k < 1 < a_{k+1}$.
	(September 29, 2012, Hohhot)
3	Let <i>n</i> be a positive integer ≥ 2 . Consider a <i>n</i> by <i>n</i> grid with all entries 1. Define an operation on a square to be changing the signs of all squares adjacent to it but not the sign of its own. Find all <i>n</i> such that it is possible after a finite sequence of operations to reach a <i>n</i> by <i>n</i> grid with all

AoPS Community

2012 China Western Mathematical Olympiad

4 Find all prime number p, such that there exist an infinite number of positive integer n satisfying the following condition: $p|n^{n+1} + (n+1)^n$.

(September 29, 2012, Hohhot)

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.