Art of Problem Solving

## AoPS Community

## Western Mathematical Olympiad 2013

www.artofproblemsolving.com/community/c5207
by sqing, 61 plus, monsterrr

1 Does there exist any integer $a, b, c$ such that $a^{2} b c+2, a b^{2} c+2, a b c^{2}+2$ are perfect squares?
2 Let the integer $n \geq 2$, and the real numbers $x_{1}, x_{2}, \cdots, x_{n} \in[0,1]$.Prove that

$$
\sum_{1 \leq k<j \leq n} k x_{k} x_{j} \leq \frac{n-1}{3} \sum_{k=1}^{n} k x_{k} .
$$

3 Let $A B C$ be a triangle, and $B_{1}, C_{1}$ be its excenters opposite $B, C . B_{2}, C_{2}$ are reflections of $B_{1}, C_{1}$ across midpoints of $A C, A B$. Let $D$ be the extouch at $B C$. Show that $A D$ is perpendicular to $B_{2} C_{2}$

4 There are $n$ coins in a row, $n \geq 2$. If one of the coins is head, select an odd number of consecutive coins (or even 1 coin) with the one in head on the leftmost, and then flip all the selected coins upside down simultaneously. This is a move. No move is allowed if all $n$ coins are tails. Suppose $m-1$ coins are heads at the initial stage, determine if there is a way to carry out $\left\lfloor\frac{2^{m}}{3}\right\rfloor$ moves
$5 \quad$ A nonempty set $A$ is called an [i] $n$-level-good [/i]set if $A \subseteq\{1,2,3, \ldots, n\}$ and $|A| \leq \min _{x \in A} x$ (where $|A|$ denotes the number of elements in $A$ and $\min _{x \in A} x$ denotes the minimum of the elements in $A$ ). Let $a_{n}$ be the number of $n$-level-good sets. Prove that for all positive integers $n$ we have $a_{n+2}=a_{n+1}+a_{n}+1$.

6 Let $P A, P B$ be tangents to a circle centered at $O$, and $C$ a point on the minor arc $A B$. The perpendicular from $C$ to $P C$ intersects internal angle bisectors of $A O C, B O C$ at $D, E$. Show that $C D=C E$

7 Label sides of a regular $n$-gon in clockwise direction in order 1,2,..,n. Determine all integers n ( $n \geq 4$ ) satisfying the following conditions:
(1) $n-3$ non-intersecting diagonals in the $n$-gon are selected, which subdivide the $n$-gon into $n-2$ non-overlapping triangles;
(2) each of the chosen $n-3$ diagonals are labeled with an integer, such that the sum of labeled numbers on three sides of each triangles in (1) is equal to the others;
$8 \quad$ Find all positive integers $a$ such that for any positive integer $n \geq 5$ we have $2^{n}-n^{2} \mid a^{n}-n^{a}$.

