Art of Problem Solving

AoPS Community

Western Mathematical Olympiad 2014

www.artofproblemsolving.com/community/c5208
by sqing, DraPekka, TheMaskedMagician

Day 1

1 Let x, y be positive real numbers .Find the minimum of $x+y+\frac{|x-1|}{y}+\frac{|y-1|}{x}$.
2 Let $A B$ be the diameter of semicircle O, C, D be points on the arc $A B, P, Q$ be respectively the circumcenter of $\triangle O A C$ and $\triangle O B D$.
Prove that: $C P \cdot C Q=D P \cdot D Q$.

3 Let A_{1}, A_{2}, \ldots be a sequence of sets such that for any positive integer i, there are only finitely many values of j such that $A_{j} \subseteq A_{i}$. Prove that there is a sequence of positive integers a_{1}, a_{2}, \ldots such that for any pair (i, j) to have $a_{i} \mid a_{j} \Longleftrightarrow A_{i} \subseteq A_{j}$.

4 Given a positive integer n, let $a_{1}, a_{2}, . ., a_{n}$ be a sequence of nonnegative integers. A sequence of one or more consecutive terms of $a_{1}, a_{2}, . ., a_{n}$ is called dragon if their aritmetic mean is larger than 1. If a sequence is a dragon, then its first term is the head and the last term is the tail. Suppose $a_{1}, a_{2}, . ., a_{n}$ is the head or/and tail of some dragon sequence; determine the minimum value of $a_{1}+a_{2}+\cdots+a_{n}$ in terms of n.

Day 2

5 Given a positive integer m, Prove that there exists a positive integers n_{0} such that all first digits after the decimal points of $\sqrt{n^{2}+817 n+m}$ in decimal representation are equal, for all integers $n>n_{0}$.

6 Let $n \geq 2$ is a given integer, $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers such that (1) $x_{1}+x_{2}+\ldots+x_{n}=0$,
(2) $\left|x_{i}\right| \leq 1(i=1,2, \cdots, n)$.

Find the maximum of $\operatorname{Min}\left\{\left|x_{1}-x_{2}\right|,\left|x_{2}-x_{3}\right|, \cdots,\left|x_{n-1}-x_{n}\right|\right\}$.
7 In the plane, Point O is the center of the equilateral triangle $A B C$, Points P, Q such that $\overrightarrow{O Q}=$ $2 \overrightarrow{P O}$.
Prove that

$$
|P A|+|P B|+|P C| \leq|Q A|+|Q B|+|Q C| .
$$

8 Given a real number $q, 1<q<2$ define a sequence $\left\{x_{n}\right\}$ as follows: for any positive integer n, let

$$
x_{n}=a_{0}+a_{1} \cdot 2+a_{2} \cdot 2^{2}+\cdots+a_{k} \cdot 2^{k} \quad\left(a_{i} \in\{0,1\}, i=0,1, \cdots m k\right)
$$

be its binary representation, define

$$
x_{k}=a_{0}+a_{1} \cdot q+a_{2} \cdot q^{2}+\cdots+a_{k} \cdot q^{k} .
$$

Prove that for any positive integer n, there exists a positive integer m such that $x_{n}<x_{m} \leq$ $x_{n}+1$.

