

AoPS Community

2014 China Western Mathematical Olympiad

Western Mathematical Olympiad 2014

www.artofproblemsolving.com/community/c5208

by sqing, DraPekka, TheMaskedMagician

Day [·]	1
------------------	---

1	Let x, y be positive real numbers .Find the minimum of $x + y + \frac{ x-1 }{y} + \frac{ y-1 }{x}$.
2	Let AB be the diameter of semicircle O , C, D be points on the arc AB , P, Q be respectively the circumcenter of $\triangle OAC$ and $\triangle OBD$.
	Prove that: $CP \cdot CQ = DP \cdot DQ$.

- **3** Let $A_1, A_2, ...$ be a sequence of sets such that for any positive integer *i*, there are only finitely many values of *j* such that $A_j \subseteq A_i$. Prove that there is a sequence of positive integers $a_1, a_2, ...$ such that for any pair (i, j) to have $a_i \mid a_j \iff A_i \subseteq A_j$.
- **4** Given a positive integer n, let $a_1, a_2, ..., a_n$ be a sequence of nonnegative integers. A sequence of one or more consecutive terms of $a_1, a_2, ..., a_n$ is called dragon if their aritmetic mean is larger than 1. If a sequence is a dragon, then its first term is the head and the last term is the tail. Suppose $a_1, a_2, ..., a_n$ is the head or/and tail of some dragon sequence; determine the minimum value of $a_1 + a_2 + \cdots + a_n$ in terms of n.

Day 2

- **5** Given a positive integer m, Prove that there exists a positive integers n_0 such that all first digits after the decimal points of $\sqrt{n^2 + 817n + m}$ in decimal representation are equal, for all integers $n > n_0$.
- 6 Let $n \ge 2$ is a given integer, x_1, x_2, \dots, x_n be real numbers such that $(1)x_1 + x_2 + \dots + x_n = 0$,

AoPS Community

2014 China Western Mathematical Olympiad

 $\begin{aligned} &(2)|x_i| \leq 1 \ (i=1,2,\cdots,n).\\ &\text{Find the maximum of Min}\{|x_1-x_2|,|x_2-x_3|,\cdots,|x_{n-1}-x_n|\}. \end{aligned}$

7 In the plane, Point *O* is the center of the equilateral triangle *ABC*, Points *P*, *Q* such that $\overrightarrow{OQ} = 2\overrightarrow{PO}$.

Prove that

$$|PA| + |PB| + |PC| \le |QA| + |QB| + |QC|.$$

8 Given a real number q, 1 < q < 2 define a sequence $\{x_n\}$ as follows: for any positive integer n, let

 $x_n = a_0 + a_1 \cdot 2 + a_2 \cdot 2^2 + \dots + a_k \cdot 2^k \qquad (a_i \in \{0, 1\}, i = 0, 1, \dots mk)$

be its binary representation, define

$$x_k = a_0 + a_1 \cdot q + a_2 \cdot q^2 + \dots + a_k \cdot q^k.$$

Prove that for any positive integer n, there exists a positive integer m such that $x_n < x_m \le x_n + 1$.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.