Art of Problem Solving

AoPS Community

China National Olympiad 1986
www.artofproblemsolving.com/community/c5209
by jred

Day 1

1 We are given n reals $a_{1}, a_{2}, \cdots, a_{n}$ such that the sum of any two of them is non-negative. Prove that the following statement and its converse are both true: if n non-negative reals $x_{1}, x_{2}, \cdots, x_{n}$ satisfy $x_{1}+x_{2}+\cdots+x_{n}=1$, then the inequality $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \geq$ $a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\cdots+a_{n} x_{n}^{2}$ holds.

2 In $\triangle A B C$, the length of altitude $A D$ is 12 , and the bisector $A E$ of $\angle A$ is 13 . Denote by m the length of median $A F$. Find the range of m when $\angle A$ is acute, orthogonal and obtuse respectively.

3 Let $Z_{1}, Z_{2}, \cdots, Z_{n}$ be complex numbers satisfying $\left|Z_{1}\right|+\left|Z_{2}\right|+\cdots+\left|Z_{n}\right|=1$. Show that there exist some among the n complex numbers such that the modulus of the sum of these complex numbers is not less than $1 / 6$.

Day 2

4 Given a $\triangle A B C$ with its area equal to 1 , suppose that the vertices of quadrilateral $P_{1} P_{2} P_{3} P_{4}$ all lie on the sides of $\triangle A B C$. Show that among the four triangles $\triangle P_{1} P_{2} P_{3}, \triangle P_{1} P_{2} P_{4}, \triangle P_{1} P_{3} P_{4}, \triangle P_{2} P_{3} P_{4}$ there is at least one whose area is not larger than $1 / 4$.

5 Given a sequence $1,1,2,2,3,3, \ldots, 1986,1986$, determine, with proof, if we can rearrange the sequence
so that for any integer $1 \leq k \leq 1986$ there are exactly k numbers between the two k s.
6 Suppose that each point on the plane is colored either white or black. Show that there exists an equilateral triangle with the side length equal to 1 or $\sqrt{3}$ whose three vertices are in the same color.

