

AoPS Community

1986 China National Olympiad

China National Olympiad 1986

www.artofproblemsolving.com/community/c5209 by jred

Day 1	
1	We are given <i>n</i> reals a_1, a_2, \dots, a_n such that the sum of any two of them is non-negative. Prove that the following statement and its converse are both true: if <i>n</i> non-negative reals x_1, x_2, \dots, x_n satisfy $x_1 + x_2 + \dots + x_n = 1$, then the inequality $a_1x_1 + a_2x_2 + \dots + a_nx_n \ge a_1x_1^2 + a_2x_2^2 + \dots + a_nx_n^2$ holds.
2	In $\triangle ABC$, the length of altitude AD is 12, and the bisector AE of $\angle A$ is 13. Denote by m the length of median AF . Find the range of m when $\angle A$ is acute, orthogonal and obtuse respectively.
3	Let Z_1, Z_2, \dots, Z_n be complex numbers satisfying $ Z_1 + Z_2 + \dots + Z_n = 1$. Show that there exist some among the <i>n</i> complex numbers such that the modulus of the sum of these complex numbers is not less than $1/6$.
Day 2	2
4	Given a $\triangle ABC$ with its area equal to 1, suppose that the vertices of quadrilateral $P_1P_2P_3P_4$ all lie on the sides of $\triangle ABC$. Show that among the four triangles $\triangle P_1P_2P_3$, $\triangle P_1P_2P_4$, $\triangle P_1P_3P_4$, $\triangle P_2P_3$. there is at least one whose area is not larger than $1/4$.
5	Given a sequence $1, 1, 2, 2, 3, 3,, 1986, 1986$, determine, with proof, if we can rearrange the sequence so that for any integer $1 \le k \le 1986$ there are exactly k numbers between the two k s.
6	Suppose that each point on the plane is colored either white or black. Show that there exists an equilateral triangle with the side length equal to 1 or $\sqrt{3}$ whose three vertices are in the same color.

🐼 AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱