

AoPS Community

China National Olympiad 1988

www.artofproblemsolving.com/community/c5211 by jred

Day 1

1	Let r_1, r_2, \ldots, r_n be real numbers. Given n reals a_1, a_2, \ldots, a_n that are not all equal to 0, suppose that inequality
	$r_1(x_1 - a_1) + r_2(x_2 - a_2) + \dots + r_n(x_n - a_n) \le \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} - \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$
	holds for arbitrary reals x_1, x_2, \ldots, x_n . Find the values of r_1, r_2, \ldots, r_n .
2	Given two circles C_1, C_2 with common center, the radius of C_2 is twice the radius of C_1 . Quadrilateral $A_1A_2A_3A_4$ is inscribed in C_1 . The extension of A_4A_1 meets C_2 at B_1 ; the extension of A_1A_2 meets C_2 at B_2 ; the extension of A_2A_3 meets C_2 at B_3 ; the extension of A_3A_4 meets C_2 at B_4 . Prove that $P(B_1B_2B_3B_4) \ge 2P(A_1A_2A_3A_4)$, and in what case the equality holds? ($P(X)$ denotes the perimeter of quadrilateral X)
3	Given a finite sequence of real numbers a_1, a_2, \ldots, a_n (*), we call a segment a_k, \ldots, a_{k+l-1} of the sequence (*) a <i>long</i> (Chinese dragon) and a_k head of the <i>long</i> if the arithmetic mean of a_k, \ldots, a_{k+l-1} is greater than 1988. (especially if a single item $a_m > 1988$, we still regard a_m as a <i>long</i>). Suppose that there is at least one <i>long</i> among the sequence (*), show that the arithmetic mean of all those items of sequence (*) that could be <i>head</i> of a certain <i>long</i> individually is greater than 1988.
Day 2	
4	(1) Let a, b, c be positive real numbers satisfying $(a^2 + b^2 + c^2)^2 > 2(a^4 + b^4 + c^4)$. Prove that a, b, c can be the lengths of three sides of a triangle respectively. (2) Let a_1, a_2, \ldots, a_n be n ($n > 3$) positive real numbers satisfying $(a_1^2 + a_2^2 + \cdots + a_n^2)^2 > (n - 1)(a_1^4 + a_2^4 + \cdots + a_n^4)$. Prove that any three of a_1, a_2, \ldots, a_n can be the lengths of three sides of a triangle respectively.
5	Given three tetrahedrons $A_iB_iC_iD_i$ ($i = 1, 2, 3$), planes $\alpha_i, \beta_i, \gamma_i$ ($i = 1, 2, 3$) are drawn through B_i, C_i, D_i respectively, and they are perpendicular to edges A_iB_i, A_iC_i, A_iD_i ($i = 1, 2, 3$) respectively. Suppose that all nine planes $\alpha_i, \beta_i, \gamma_i$ ($i = 1, 2, 3$) meet at a point E , and points A_1, A_2, A_3 lie on line l . Determine the intersection (shape and position) of the circumscribed spheres of the three tetrahedrons.
6	Let $n \ (n \ge 3)$ be a natural number. Denote by $f(n)$ the least natural number by which n is not divisible (e.g. $f(12) = 5$). If $f(n) \ge 3$, we may have $f(f(n))$ in the same way. Similarly, if

AoPS Community

1988 China National Olympiad

 $f(f(n)) \ge 3$, we may have f(f(f(n))), and so on. If $\underbrace{f(f(\dots f(n) \dots))}_{k \text{ times}} = 2$, we call k the *length* of n (also we denote by l_n the *length* of n). For arbitrary natural number n ($n \ge 3$), find l_n with proof.

AoPS Online AoPS Academy AoPS & AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.