Art of Problem Solving

AoPS Community

1988 China National Olympiad

China National Olympiad 1988

www.artofproblemsolving.com/community/c5211
by jred

Day 1

1 Let $r_{1}, r_{2}, \ldots, r_{n}$ be real numbers. Given n reals $a_{1}, a_{2}, \ldots, a_{n}$ that are not all equal to 0 , suppose that inequality

$$
r_{1}\left(x_{1}-a_{1}\right)+r_{2}\left(x_{2}-a_{2}\right)+\cdots+r_{n}\left(x_{n}-a_{n}\right) \leq \sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}-\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

holds for arbitrary reals $x_{1}, x_{2}, \ldots, x_{n}$. Find the values of $r_{1}, r_{2}, \ldots, r_{n}$.
2 Given two circles C_{1}, C_{2} with common center, the radius of C_{2} is twice the radius of C_{1}. Quadrilateral $A_{1} A_{2} A_{3} A_{4}$ is inscribed in C_{1}. The extension of $A_{4} A_{1}$ meets C_{2} at B_{1}; the extension of $A_{1} A_{2}$ meets C_{2} at B_{2}; the extension of $A_{2} A_{3}$ meets C_{2} at B_{3}; the extension of $A_{3} A_{4}$ meets C_{2} at B_{4}. Prove that $P\left(B_{1} B_{2} B_{3} B_{4}\right) \geq 2 P\left(A_{1} A_{2} A_{3} A_{4}\right)$, and in what case the equality holds? $(P(X)$ denotes the perimeter of quadrilateral X)

3 Given a finite sequence of real numbers $a_{1}, a_{2}, \ldots, a_{n}(*)$, we call a segment a_{k}, \ldots, a_{k+l-1} of the sequence $(*)$ a long(Chinese dragon) and a_{k} head of the long if the arithmetic mean of a_{k}, \ldots, a_{k+l-1} is greater than 1988. (especially if a single item $a_{m}>1988$, we still regard a_{m} as a long). Suppose that there is at least one long among the sequence (*), show that the arithmetic mean of all those items of sequence (*) that could be head of a certain long individually is greater than 1988.

Day 2

4 (1) Let a, b, c be positive real numbers satisfying $\left(a^{2}+b^{2}+c^{2}\right)^{2}>2\left(a^{4}+b^{4}+c^{4}\right)$. Prove that a, b, c can be the lengths of three sides of a triangle respectively.
(2) Let $a_{1}, a_{2}, \ldots, a_{n}$ be $n(n>3)$ positive real numbers satisfying $\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)^{2}>$ $(n-1)\left(a_{1}^{4}+a_{2}^{4}+\cdots+a_{n}^{4}\right)$. Prove that any three of $a_{1}, a_{2}, \ldots, a_{n}$ can be the lengths of three sides of a triangle respectively.

5 Given three tetrahedrons $A_{i} B_{i} C_{i} D_{i}(i=1,2,3)$, planes $\alpha_{i}, \beta_{i}, \gamma_{i}(i=1,2,3)$ are drawn through B_{i}, C_{i}, D_{i} respectively, and they are perpendicular to edges $A_{i} B_{i}, A_{i} C_{i}, A_{i} D_{i}$ ($i=1,2,3$) respectively. Suppose that all nine planes $\alpha_{i}, \beta_{i}, \gamma_{i}(i=1,2,3)$ meet at a point E, and points A_{1}, A_{2}, A_{3} lie on line l. Determine the intersection (shape and position) of the circumscribed spheres of the three tetrahedrons.

6 Let $n(n \geq 3)$ be a natural number. Denote by $f(n)$ the least natural number by which n is not divisible (e.g. $f(12)=5$). If $f(n) \geq 3$, we may have $f(f(n)$) in the same way. Similarly, if
$f(f(n)) \geq 3$, we may have $f(f(f(n)))$, and so on. If $\underbrace{f(f(\ldots f}_{k \text { times }} f(n) \ldots))=2$, we call k the length of n (also we denote by l_{n} the length of n). For arbitrary natural number $n(n \geq 3)$, find l_{n} with proof.

