AoPS Community

China National Olympiad 1990
www.artofproblemsolving.com/community/c5213
by jred

Day 1

1 Given a convex quadrilateral $A B C D$, side $A B$ is not parallel to side $C D$. The circle O_{1} passing through A and B is tangent to side $C D$ at P. The circle O_{2} passing through C and D is tangent to side $A B$ at Q. Circle O_{1} and circle O_{2} meet at E and F. Prove that $E F$ bisects segment $P Q$ if and only if $B C \| A D$.

2 Let x be a natural number. We call $\left\{x_{0}, x_{1}, \ldots, x_{l}\right\}$ a factor link of x if the sequence $\left\{x_{0}, x_{1}, \ldots, x_{l}\right\}$ satisfies the following conditions:
(1) $x_{0}=1, x_{l}=x$;
(2) $x_{i-1}<x_{i}, x_{i-1} \mid x_{i}, i=1,2, \ldots, l$.

Meanwhile, we define l as the length of the factorlink $\left\{x_{0}, x_{1}, \ldots, x_{l}\right\}$. Denote by $L(x)$ and $R(x)$ the length and the number of the longest factor link of x respectively. For $x=5^{k} \times 31^{m} \times 1990^{n}$, where k, m, n are natural numbers, find the value of $L(x)$ and $R(x)$.

3 A function $f(x)$ defined for $x \geq 0$ satisfies the following conditions:
i. for $x, y \geq 0, f(x) f(y) \leq x^{2} f(y / 2)+y^{2} f(x / 2)$;
ii. there exists a constant $M(M>0)$, such that $|f(x)| \leq M$ when $0 \leq x \leq 1$.

Prove that $f(x) \leq x^{2}$.

Day 2

4 Given a positive integer number a and two real numbers A and B, find a necessary and sufficient condition on A and B for the following system of equations to have integer solution:

$$
\left\{\begin{array}{c}
x^{2}+y^{2}+z^{2}=(B a)^{2} \\
x^{2}\left(A x^{2}+B y^{2}\right)+y^{2}\left(A y^{2}+B z^{2}\right)+z^{2}\left(A z^{2}+B x^{2}\right)=\frac{1}{4}(2 A+B)(B a)^{4}
\end{array}\right.
$$

$5 \quad$ Given a finite set X, let f be a rule such that f maps every even-element-subset E of X (i.e. $E \subseteq X,|E|$ is even) into a real number $f(E)$. Suppose that f satisfies the following conditions:
(I) there exists an even-element-subset D of X such that $f(D)>1990$;
(II) for any two disjoint even-element-subsets A, B of X, equation $f(A \cup B)=f(A)+f(B)-1990$ holds.
Prove that there exist two subsets P, Q of X satisfying:
(1) $P \cap Q=\emptyset, P \cup Q=X$;
(2) for any non-even-element-subset S of P (i.e. $S \subseteq P,|S|$ is odd), we have $f(S)>1990$; (3) for any even-element-subset T of Q, we have $f(T) \leq 1990$.

6 A convex n-gon and its $n-3$ diagonals which have no common point inside the polygon form a subdivision graph. Show that if and only if $3 \mid n$, there exists a subdivision graph that can be drawn in one closed stroke. (i.e. start from a certain vertex, get through every edges and diagonals exactly one time, finally back to the starting vertex.)

