

AoPS Community

1993 China National Olympiad

China National Olympiad 1993

www.artofproblemsolving.com/community/c5216 by jred

Day	1
-----	---

1	Given an odd <i>n</i> , prove that there exist $2n$ integers a_1, a_2, \dots, a_n ; b_1, b_2, \dots, b_n , such that for any integer <i>k</i> ($0 < k < n$), the following $3n$ integers: $a_i + a_{i+1}, a_i + b_i, b_i + b_{i+k}$ ($i = 1, 2, \dots, n; a_{n+1} = a_1, b_{n+j} = b_j, 0 < j < n$) are of different remainders on division by $3n$.
2	Given a natural number k and a real number $a(a > 0)$, find the maximal value of $a^{k_1} + a^{k_2} + \cdots + a^{k_r}$, where $k_1 + k_2 + \cdots + k_r = k$ ($k_i \in \mathbb{N}, 1 \le r \le k$).
3	Let K, K_1 be two circles with the same center and their radii equal to R and $R_1(R_1 > R)$ respectively. Quadrilateral $ABCD$ is inscribed in circle K . Quadrilateral $A_1B_1C_1D_1$ is inscribed in circle K_1 where A_1, B_1, C_1, D_1 lie on rays CD, DA, AB, BC respectively. Show that $\frac{S_{A_1B_1C_1D_1}}{S_{ABCD}} \ge \frac{R_1^2}{R^2}$.
Day 2	
4	We are given a set $S = \{z_1, z_2, \dots, z_{1993}\}$, where $z_1, z_2, \dots, z_{1993}$ are nonzero complex numbers (also viewed as nonzero vectors in the plane). Prove that we can divide S into some groups
	$z_i(1 \le i \le 1993)$ of p , the angle between z_i and $T(p)$ does not exceed 90°;
5	 (1) Each element in S belongs and only belongs to one group; (2) For any group p, if we use T(p) to denote the sum of all memebers in p, then for any memeber z_i(1 ≤ i ≤ 1993) of p, the angle between z_i and T(p) does not exceed 90°; (3) For any two groups p and q, the angle between T(p) and T(q) exceeds 90° (use the notation introduced in (2)). 10 students bought some books in a bookstore. It is known that every student bought exactly three kinds of books, and any two of them shared at least one kind of book. Determine, with
5	 (1) Each element in S belongs and only belongs to one group; (2) For any group p, if we use T(p) to denote the sum of all memebers in p, then for any memeber z_i(1 ≤ i ≤ 1993) of p, the angle between z_i and T(p) does not exceed 90°; (3) For any two groups p and q, the angle between T(p) and T(q) exceeds 90° (use the notation introduced in (2)). 10 students bought some books in a bookstore. It is known that every student bought exactly three kinds of books, and any two of them shared at least one kind of book. Determine, with proof, how many students bought the most popular book at least? (Note: the most popular

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.