AoPS Community

China National Olympiad 1994
www.artofproblemsolving.com/community/c5217
by jred

Day 1

1 Let $A B C D$ be a trapezoid with $A B \| C D$. Points E, F lie on segments $A B, C D$ respectively. Segments $C E, B F$ meet at H, and segments $E D, A F$ meet at G. Show that $S_{E H F G} \leq \frac{1}{4} S_{A B C D}$. Determine, with proof, if the conclusion still holds when $A B C D$ is just any convex quadrilateral.

2 There are m pieces of candy held in n trays $(n, m \geq 4)$. An operation is defined as follow: take out one piece of candy from any two trays respectively, then put them in a third tray. Determine, with proof, if we can move all candies to a single tray by finite operations.

3 Find all functions $f:[1, \infty) \rightarrow[1, \infty)$ satisfying the following conditions:
(1) $f(x) \leq 2(x+1)$;
(2) $f(x+1)=\frac{1}{x}\left[(f(x))^{2}-1\right]$.

Day 2

4 Let $f(z)=c_{0} z^{n}+c_{1} z^{n-1}+c_{2} z^{n-2}+\cdots+c_{n-1} z+c_{n}$ be a polynomial with complex coefficients. Prove that there exists a complex number z_{0} such that $\left|f\left(z_{0}\right)\right| \geq\left|c_{0}\right|+\left|c_{n}\right|$, where $\left|z_{0}\right| \leq 1$.

5 For arbitrary natural number n, prove that $\sum_{k=0}^{n} C_{n}^{k} 2^{k} C_{n-k}^{[(n-k) / 2]}=C_{2 n+1}^{n}$, where $C_{0}^{0}=1$ and $\left[\frac{n-k}{2}\right]$ denotes the integer part of $\frac{n-k}{2}$.
$6 \quad$ Let M be a point which has coordinates $(p \times 1994,7 p \times 1994)$ in the Cartesian plane (p is a prime). Find the number of right-triangles satisfying the following conditions:
(1) all vertexes of the triangle are lattice points, moreover M is on the right-angled corner of the triangle;
(2) the origin $(0,0)$ is the incenter of the triangle.

