

## **AoPS Community**

## 1994 China National Olympiad

## **China National Olympiad 1994**

www.artofproblemsolving.com/community/c5217 by jred

## Day 1

| 1   | Let $ABCD$ be a trapezoid with $AB \parallel CD$ . Points $E, F$ lie on segments $AB, CD$ respectively                                                                                                                                                                                                                                                                                    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Segments $CE, BF$ meet at $H$ , and segments $ED, AF$ meet at $G$ . Show that $S_{EHFG} \leq \frac{1}{4}S_{ABCD}$                                                                                                                                                                                                                                                                         |
|     | Determine, with proof, if the conclusion still holds when $ABCD$ is just any convex quadrilat eral.                                                                                                                                                                                                                                                                                       |
| 2   | There are $m$ pieces of candy held in $n$ trays( $n, m \ge 4$ ). An <i>operation</i> is defined as follow: take out one piece of candy from any two trays respectively, then put them in a third tray. Determine with proof, if we can move all candies to a single tray by finite <i>operations</i> .                                                                                    |
| 3   | Find all functions $f : [1, \infty) \to [1, \infty)$ satisfying the following conditions:<br>(1) $f(x) \le 2(x+1)$ ;                                                                                                                                                                                                                                                                      |
|     | (1) $f(x) \le 2(x+1);$<br>(2) $f(x+1) = \frac{1}{x}[(f(x))^2 - 1].$                                                                                                                                                                                                                                                                                                                       |
| Day | 2                                                                                                                                                                                                                                                                                                                                                                                         |
| 4   | Let $f(z) = c_0 z^n + c_1 z^{n-1} + c_2 z^{n-2} + \dots + c_{n-1} z + c_n$ be a polynomial with complex coefficients.<br>Prove that there exists a complex number $z_0$ such that $ f(z_0)  \ge  c_0  +  c_n $ , where $ z_0  \le 1$ .                                                                                                                                                    |
| 5   | For arbitrary natural number $n$ , prove that $\sum_{k=0}^{n} C_n^k 2^k C_{n-k}^{[(n-k)/2]} = C_{2n+1}^n$ , where $C_0^0 = 1$ and $[\frac{n-k}{2}]$ denotes the integer part of $\frac{n-k}{2}$ .                                                                                                                                                                                         |
| 6   | Let <i>M</i> be a point which has coordinates $(p \times 1994, 7p \times 1994)$ in the Cartesian plane ( <i>p</i> is a prime). Find the number of right-triangles satisfying the following conditions:<br>(1) all vertexes of the triangle are lattice points, moreover <i>M</i> is on the right-angled corner of the triangle;<br>(2) the origin (0, 0) is the incenter of the triangle. |

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱