Art of Problem Solving

AoPS Community

China National Olympiad 1996
www.artofproblemsolving.com/community/c5219
by vladimir92, moldovan, Rijul saini, shobber

Day 1

1 Let $\triangle A B C$ be a triangle with orthocentre H. The tangent lines from A to the circle with diameter $B C$ touch this circle at P and Q. Prove that H, P and Q are collinear.

2 Find the smallest positive integer K such that every K-element subset of $\{1,2, \ldots, 50\}$ contains two distinct elements a, b such that $a+b$ divides $a b$.

3 Suppose that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
f\left(x^{3}+y^{3}\right)=(x+y)\left(f(x)^{2}-f(x) f(y)+f(y)^{2}\right)
$$

for all $x, y \in \mathbb{R}$.
Prove that $f(1996 x)=1996 f(x)$ for all $x \in \mathbb{R}$.

Day 2

18 singers take part in a festival. The organiser wants to plan m concerts. For every concert there are 4 singers who go on stage, with the restriction that the times of which every two singers go on stage in a concert are all equal. Find a schedule that minimises m.

2 Let n be a natural number. Suppose that $x_{0}=0$ and that $x_{i}>0$ for all $i \in\{1,2, \ldots, n\}$. If $\sum_{i=1}^{n} x_{i}=1$, prove that

$$
1 \leq \sum_{i=1}^{n} \frac{x_{i}}{\sqrt{1+x_{0}+x_{1}+\ldots+x_{i-1}} \sqrt{x_{i}+\ldots+x_{n}}}<\frac{\pi}{2}
$$

3 In the triangle $A B C, \angle C=90^{\circ}, \angle A=30^{\circ}$ and $B C=1$. Find the minimum value of the longest side of all inscribed triangles (i.e. triangles with vertices on each of three sides) of the triangle $A B C$.

