

AoPS Community

1996 China National Olympiad

China National Olympiad 1996

www.artofproblemsolving.com/community/c5219 by vladimir92, moldovan, Rijul saini, shobber

Day	1
1	Let $\triangle ABC$ be a triangle with orthocentre H . The tangent lines from A to the circle with diameter BC touch this circle at P and Q . Prove that H, P and Q are collinear.
2	Find the smallest positive integer K such that every K-element subset of $\{1, 2,, 50\}$ contains two distinct elements a, b such that $a + b$ divides ab .
3	Suppose that the function $f:\mathbb{R} ightarrow\mathbb{R}$ satisfies
	$f(x^{3} + y^{3}) = (x + y)(f(x)^{2} - f(x)f(y) + f(y)^{2})$
	for all $x, y \in \mathbb{R}$. Prove that $f(1996x) = 1996f(x)$ for all $x \in \mathbb{R}$.
-	

- Day 2
- 1 8 singers take part in a festival. The organiser wants to plan m concerts. For every concert there are 4 singers who go on stage, with the restriction that the times of which every two singers go on stage in a concert are all equal. Find a schedule that minimises m.
- **2** Let *n* be a natural number. Suppose that $x_0 = 0$ and that $x_i > 0$ for all $i \in \{1, 2, ..., n\}$. If $\sum_{i=1}^{n} x_i = 1$, prove that

$$1 \le \sum_{i=1}^{n} \frac{x_i}{\sqrt{1 + x_0 + x_1 + \ldots + x_{i-1}}\sqrt{x_i + \ldots + x_n}} < \frac{\pi}{2}$$

3 In the triangle ABC, $\angle C = 90^{\circ}$, $\angle A = 30^{\circ}$ and BC = 1. Find the minimum value of the longest side of all inscribed triangles (i.e. triangles with vertices on each of three sides) of the triangle ABC.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.