AoPS Community

China National Olympiad 1998
www.artofproblemsolving.com/community/c5221
by jred

Day 1

1 Let $A B C$ be a non-obtuse triangle satisfying $A B>A C$ and $\angle B=45^{\circ}$. The circumcentre O and incentre I of triangle $A B C$ are such that $\sqrt{2} O I=A B-A C$. Find the value of $\sin A$.

2 Given a positive integer $n>1$, determine with proof if there exist $2 n$ pairwise different positive integers $a_{1}, \ldots, a_{n}, b_{1}, \ldots b_{n}$ such that $a_{1}+\ldots+a_{n}=b_{1}+\ldots+b_{n}$ and

$$
n-1>\sum_{i=1}^{n} \frac{a_{i}-b_{i}}{a_{i}+b_{i}}>n-1-\frac{1}{1998} .
$$

3 Let $S=\{1,2, \ldots, 98\}$. Find the least natural number n such that we can pick out 10 numbers in any n-element subset of S satisfying the following condition: no matter how we equally divide the 10 numbers into two groups, there exists a number in one group such that it is coprime to the other numbers in that group, meanwhile there also exists a number in the other group such that it is not coprime to any of the other numbers in the same group.

Day 2

1 Find all natural numbers $n>3$, such that 2^{2000} is divisible by $1+C_{n}^{1}+C_{n}^{2}+C_{n}^{3}$.
2 Let D be a point inside acute triangle $A B C$ satisfying the condition

$$
D A \cdot D B \cdot A B+D B \cdot D C \cdot B C+D C \cdot D A \cdot C A=A B \cdot B C \cdot C A
$$

Determine (with proof) the geometric position of point D.
3 Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers, where $n \geq 2$, satisfying $\sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n-1} x_{i} x_{i+1}=1$. For each k, find the maximal value of $\left|x_{k}\right|$.

