

AoPS Community

1999 China National Olympiad

China National Olympiad 1999

www.artofproblemsolving.com/community/c5222 by WakeUp, quangdung_toank13

Day 1	
1	Let ABC be an acute triangle with $\angle C > \angle B$. Let D be a point on BC such that $\angle ADB$ is obtuse, and let H be the orthocentre of triangle ABD . Suppose that F is a point inside triangle ABC that is on the circumcircle of triangle ABD . Prove that F is the orthocenter of triangle ABC if and only if $HD CF$ and H is on the circumcircle of triangle ABC .
2	Let <i>a</i> be a real number. Let $(f_n(x))_{n\geq 0}$ be a sequence of polynomials such that $f_0(x) = 1$ and $f_{n+1}(x) = xf_n(x) + f_n(ax)$ for all non-negative integers <i>n</i> . a) Prove that $f_n(x) = x^n f_n(x^{-1})$ for all non-negative integers <i>n</i> . b) Find an explicit expression for $f_n(x)$.
3	There are 99 space stations. Each pair of space stations is connected by a tunnel. There are 99 two-way main tunnels, and all the other tunnels are strictly one-way tunnels. A group of 4 space stations is called <i>connected</i> if one can reach each station in the group from every other station in the group without using any tunnels other than the 6 tunnels which connect them. Determine the maximum number of connected groups.
Day 2	
1	Let m be a positive integer. Prove that there are integers a,b,k , such that both a and b are odd, $k\geq 0$ and $2m=a^{19}+b^{99}+k\cdot 2^{1999}$

2 Determine the maximum value of λ such that if $f(x) = x^3 + ax^2 + bx + c$ is a cubic polynomial with all its roots nonnegative, then

$$f(x) \ge \lambda (x-a)^3$$

for all $x \ge 0$. Find the equality condition.

3 A $4 \times 4 \times 4$ cube is composed of 64 unit cubes. The faces of 16 unit cubes are to be coloured red. A colouring is called interesting if there is exactly 1 red unit cube in every $1 \times 1 \times 4$ rectangular box composed of 4 unit cubes. Determine the number of interesting colourings.

Art of Problem Solving is an ACS WASC Accredited School.