Art of Problem Solving

AoPS Community

China National Olympiad 1999
www.artofproblemsolving.com/community/c5222
by WakeUp, quangdung_toank13

Day 1

1 Let $A B C$ be an acute triangle with $\angle C>\angle B$. Let D be a point on $B C$ such that $\angle A D B$ is obtuse, and let H be the orthocentre of triangle $A B D$. Suppose that F is a point inside triangle $A B C$ that is on the circumcircle of triangle $A B D$. Prove that F is the orthocenter of triangle $A B C$ if and only if $H D \| C F$ and H is on the circumcircle of triangle $A B C$.

2 Let a be a real number. Let $\left(f_{n}(x)\right)_{n \geq 0}$ be a sequence of polynomials such that $f_{0}(x)=1$ and $f_{n+1}(x)=x f_{n}(x)+f_{n}(a x)$ for all non-negative integers n.
a) Prove that $f_{n}(x)=x^{n} f_{n}\left(x^{-1}\right)$ for all non-negative integers n.
b) Find an explicit expression for $f_{n}(x)$.

3 There are 99 space stations. Each pair of space stations is connected by a tunnel. There are 99 two-way main tunnels, and all the other tunnels are strictly one-way tunnels. A group of 4 space stations is called connected if one can reach each station in the group from every other station in the group without using any tunnels other than the 6 tunnels which connect them. Determine the maximum number of connected groups.

Day 2

1 Let m be a positive integer. Prove that there are integers a, b, k, such that both a and b are odd, $k \geq 0$ and

$$
2 m=a^{19}+b^{99}+k \cdot 2^{1999}
$$

2 Determine the maximum value of λ such that if $f(x)=x^{3}+a x^{2}+b x+c$ is a cubic polynomial with all its roots nonnegative, then

$$
f(x) \geq \lambda(x-a)^{3}
$$

for all $x \geq 0$. Find the equality condition.
3 A $4 \times 4 \times 4$ cube is composed of 64 unit cubes. The faces of 16 unit cubes are to be coloured red. A colouring is called interesting if there is exactly 1 red unit cube in every $1 \times 1 \times 4$ rectangular box composed of 4 unit cubes. Determine the number of interesting colourings.

