AoPS Community

China National Olympiad 2000
www.artofproblemsolving.com/community/c5223
by jred

Day 1

1 The sides a, b, c of triangle $A B C$ satisfy $a \leq b \leq c$. The circumradius and inradius of triangle $A B C$ are R and r respectively. Let $f=a+b-2 R-2 r$. Determine the sign of f by the measure of angle C.

2 A sequence $\left(a_{n}\right)$ is defined recursively by $a_{1}=0, a_{2}=1$ and for $n \geq 3$,

$$
a_{n}=\frac{1}{2} n a_{n-1}+\frac{1}{2} n(n-1) a_{n-2}+(-1)^{n}\left(1-\frac{n}{2}\right) .
$$

Find a closed-form expression for $f_{n}=a_{n}+2\binom{n}{1} a_{n-1}+3\binom{n}{2} a_{n-2}+\ldots+(n-1)\binom{n}{n-2} a_{2}+n\binom{n}{n-1} a_{1}$.

3 A table tennis club hosts a series of doubles matches following several rules:
(i) each player belongs to two pairs at most;
(ii) every two distinct pairs play one game against each other at most;
(iii) players in the same pair do not play against each other when they pair with others respectively.
Every player plays a certain number of games in this series. All these distinct numbers make up a set called the set of games. Consider a set $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ of positive integers such that every element in A is divisible by 6 . Determine the minimum number of players needed to participate in this series so that a schedule for which the corresponding set of games is equal to set A exists.

Day 2

1 Given an ordered n-tuple $A=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ of real numbers, where $n \geq 2$, we define $b_{k}=$ $\max a_{1}, \ldots a_{k}$ for each k. We define $B=\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ to be the innovated tuple of A. The number of distinct elements in B is called the innovated degree of A.
Consider all permutations of $1,2, \ldots, n$ as an ordered n-tuple. Find the arithmetic mean of the first term of the permutations whose innovated degrees are all equal to 2

2 Find all positive integers n such that there exists integers $n_{1}, \ldots, n_{k} \geq 3$, for some integer k, satisfying

$$
n=n_{1} n_{2} \cdots n_{k}=2^{\frac{1}{k^{k}}\left(n_{1}-1\right) \cdots\left(n_{k}-1\right)}-1 .
$$

3 A test contains 5 multiple choice questions which have 4 options in each. Suppose each examinee chose one option for each question. There exists a number n, such that for any n sheets among 2000 sheets of answer papers, there are 4 sheets of answer papers such that any two of them have at most 3 questions with the same answers. Find the minimum value of n.

