

AoPS Community

China National Olympiad 2002

www.artofproblemsolving.com/community/c5225 by horizon

Day	1
1	the edges of triangle <i>ABC</i> are a, b, c respectively, $b < c,AD$ is the bisector of $\angle A$,point <i>D</i> is on segment <i>BC</i> . (1)find the property $\angle A, \angle B, \angle C$ have, so that there exists point <i>E</i> , <i>F</i> on <i>AB</i> , <i>AC</i> satisfy <i>BE</i> = <i>CF</i> , and $\angle NDE = \angle CDF$ (2)when such <i>E</i> , <i>F</i> exist, express <i>BE</i> with a, b, c
2	Given the polynomial sequence $(p_n(x))$ satisfying $p_1(x) = x^2 - 1$, $p_2(x) = 2x(x^2 - 1)$, and $p_{n+1}(x)p_{n-1}(x) = (p_n(x)^2 - (x^2 - 1)^2)$, for $n \ge 2$, let s_n be the sum of the absolute values of the coefficients of $p_n(x)$. For each n , find a non-negative integer k_n such that $2^{-k_n}s_n$ is odd.
3	In a competition there are 18 teams and in each round 18 teams are divided into 9 pairs where the 9 matches are played coincidentally. There are 17 rounds, so that each pair of teams play each other exactly once. After n rounds, there always exists 4 teams such that there was ex- actly one match played between these teams in those n rounds. Find the maximum value of n.
Day	2
1	For every four points P_1, P_2, P_3, P_4 on the plane, find the minimum value of $\frac{\sum_{1 \le i < j \le 4} P_i P_j}{\min_{1 \le i < j \le 4} (P_i P_j)}$.
2	Suppose that a point in the plane is called <i>good</i> if it has rational coordinates. Prove that all good points can be divided into three sets satisfying: 1) If the centre of the circle is good, then there are three points in the circle from each of the three sets. 2) There are no three collinear points that are from each of the three sets.
3	Suppose that $c \in (\frac{1}{2}, 1)$. Find the least M such that for every integer $n \ge 2$ and real numbers

3 Suppose that $c \in (\frac{1}{2}, 1)$. Find the least M such that for every integer $n \ge 2$ and real numbers $0 < a_1 \le a_2 \le \ldots \le a_n$, if $\frac{1}{n} \sum_{k=1}^n ka_k = c \sum_{k=1}^n a_k$, then we always have that $\sum_{k=1}^n a_k \le M \sum_{k=1}^m a_k$ where m = [cn]

🐼 AoPS Online 🐼 AoPS Academy 🐲 AoPS 🗱