AoPS Community

China National Olympiad 2007
www.artofproblemsolving.com/community/c5230
by Lei Lei

Day 1

1 Given complex numbers a, b, c, let $|a+b|=m,|a-b|=n$. If $m n \neq 0$, Show that

$$
\max \{|a c+b|,|a+b c|\} \geq \frac{m n}{\sqrt{m^{2}+n^{2}}}
$$

2 Show that:

1) If $2 n-1$ is a prime number, then for any n pairwise distinct positive integers $a_{1}, a_{2}, \ldots, a_{n}$, there exists $i, j \in\{1,2, \ldots, n\}$ such that

$$
\frac{a_{i}+a_{j}}{\left(a_{i}, a_{j}\right)} \geq 2 n-1
$$

2) If $2 n-1$ is a composite number, then there exists n pairwise distinct positive integers $a_{1}, a_{2}, \ldots, a_{n}$, such that for any $i, j \in\{1,2, \ldots, n\}$ we have

$$
\frac{a_{i}+a_{j}}{\left(a_{i}, a_{j}\right)}<2 n-1
$$

Here (x, y) denotes the greatest common divisor of x, y.
3 Let $a_{1}, a_{2}, \ldots, a_{11}$ be 11 pairwise distinct positive integer with sum less than 2007. Let S be the sequence of $1,2, \ldots, 2007$. Define an operation to be 22 consecutive applications of the following steps on the sequence S : on i-th step, choose a number from the sequense S at random, say x. If $1 \leq i \leq 11$, replace x with $x+a_{i}$; if $12 \leq i \leq 22$, replace x with $x-a_{i-11}$. If the result of operation on the sequence S is an odd permutation of $\{1,2, \ldots, 2007\}$, it is an odd operation; if the result of operation on the sequence S is an even permutation of $\{1,2, \ldots, 2007\}$, it is an even operation. Which is larger, the number of odd operation or the number of even permutation? And by how many?
Here $\left\{x_{1}, x_{2}, \ldots, x_{2007}\right\}$ is an even permutation of $\{1,2, \ldots, 2007\}$ if the product $\prod_{i>j}\left(x_{i}-x_{j}\right)$ is positive, and an odd one otherwise.

Day 2

1 Let O, I be the circumcenter and incenter of triangle $A B C$. The incircle of $\triangle A B C$ touches $B C, C A, A B$ at points D, E, F repsectively. $F D$ meets $C A$ at $P, E D$ meets $A B$ at $Q . M$ and N are midpoints of $P E$ and $Q F$ respectively. Show that $O I \perp M N$.

2 Let $\left\{a_{n}\right\}_{n \geq 1}$ be a bounded sequence satisfying

$$
a_{n}<\sum_{k=a}^{2 n+2006} \frac{a_{k}}{k+1}+\frac{1}{2 n+2007} \quad \forall n=1,2,3, \ldots
$$

Show that

$$
a_{n}<\frac{1}{n} \quad \forall \quad n=1,2,3, \ldots
$$

3 Find a number $n \geq 9$ such that for any n numbers, not necessarily distinct, $a_{1}, a_{2}, \ldots, a_{n}$, there exists 9 numbers $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{9}},\left(1 \leq i_{1}<i_{2}<\ldots<i_{9} \leq n\right)$ and $b_{i} \in 4,7, i=1,2, \ldots, 9$ such that $b_{1} a_{i_{1}}+b_{2} a_{i_{2}}+\ldots+b_{9} a_{i_{9}}$ is a multiple of 9 .

