AoPS Community

China National Olympiad 2008
www.artofproblemsolving.com/community/c5231
by Lei Lei, jgnr

Day 1

1 Suppose $\triangle A B C$ is scalene. O is the circumcenter and A^{\prime} is a point on the extension of segment $A O$ such that $\angle B A^{\prime} A=\angle C A^{\prime} A$. Let point A_{1} and A_{2} be foot of perpendicular from A^{\prime} onto $A B$ and $A C . H_{A}$ is the foot of perpendicular from A onto $B C$. Denote R_{A} to be the radius of circumcircle of $\triangle H_{A} A_{1} A_{2}$. Similiarly we can define R_{B} and R_{C}. Show that:

$$
\frac{1}{R_{A}}+\frac{1}{R_{B}}+\frac{1}{R_{C}}=\frac{2}{R}
$$

where R is the radius of circumcircle of $\triangle A B C$.
2 Given an integer $n \geq 3$, prove that the set $X=\left\{1,2,3, \ldots, n^{2}-n\right\}$ can be divided into two non-intersecting subsets such that neither of them contains n elements $a_{1}, a_{2}, \ldots, a_{n}$ with $a_{1}<a_{2}<\ldots<a_{n}$ and $a_{k} \leq \frac{a_{k-1}+a_{k+1}}{2}$ for all $k=2, \ldots, n-1$.

3 Given a positive integer n and $x_{1} \leq x_{2} \leq \ldots \leq x_{n}, y_{1} \geq y_{2} \geq \ldots \geq y_{n}$, satisfying

$$
\sum_{i=1}^{n} i x_{i}=\sum_{i=1}^{n} i y_{i}
$$

Show that for any real number α, we have

$$
\sum_{i=1}^{n} x_{i}[i \alpha] \geq \sum_{i=1}^{n} y_{i}[i \alpha]
$$

Here $[\beta]$ denotes the greastest integer not larger than β.

Day 2

1 Let A be an infinite subset of \mathbb{N}, and n a fixed integer. For any prime p not dividing n, There are infinitely many elements of A not divisible by p. Show that for any integer $m>1,(m, n)=1$, There exist finitely many elements of A, such that their sum is congruent to 1 modulo m and congruent to 0 modulo n.

2 Find the smallest integer n satisfying the following condition: regardless of how one colour the vertices of a regular n-gon with either red, yellow or blue, one can always find an isosceles trapezoid whose vertices are of the same colour.

3 Find all triples (p, q, n) that satisfy

$$
q^{n+2} \equiv 3^{n+2}\left(\bmod p^{n}\right), \quad p^{n+2} \equiv 3^{n+2}\left(\bmod q^{n}\right)
$$

where p, q are odd primes and n is an positive integer.

