

AoPS Community

China National Olympiad 2009

www.artofproblemsolving.com/community/c5232 by Fang-jh

Day 1

1	Given an acute triangle <i>PBC</i> with $PB \neq PC$. Points <i>A</i> , <i>D</i> lie on <i>PB</i> , <i>PC</i> , respectively. <i>AC</i> intersects <i>BD</i> at point <i>O</i> . Let <i>E</i> , <i>F</i> be the feet of perpendiculars from <i>O</i> to <i>AB</i> , <i>CD</i> , respectively. Denote by <i>M</i> , <i>N</i> the midpoints of <i>BC</i> , <i>AD</i> . (1): If four points <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> lie on one circle, then $EM \cdot FN = EN \cdot FM$. (2): Determine whether the converse of (1) is true or not, justify your answer.
2	Find all the pairs of prime numbers (p,q) such that $pq 5^p + 5^q$.
3	Given two integers m, n satisfying $4 < m < n$. Let $A_1A_2 \cdots A_{2n+1}$ be a regular $2n + 1$ polygon. Denote by P the set of its vertices. Find the number of convex m polygon whose vertices belongs to P and exactly has two acute angles.
Day	2
1	Given an integer $n > 3$. Let a_1, a_2, \dots, a_n be real numbers satisfying $min a_i - a_j = 1, 1 \le i \le j \le n$. Find the minimum value of $\sum_{k=1}^n a_k ^3$.
2	Let P be a convex n polygon each of which sides and diagnoals is colored with one of n distinct colors. For which n does: there exists a coloring method such that for any three of n colors, we can always find one triangle whose vertices is of P' and whose sides is colored by the three colors respectively.
3	Given an integer $n > 3$. Prove that there exists a set S consisting of n pairwisely distinct positive integers such that for any two different non-empty subset of $S:A, B, \frac{\sum_{x \in A} x}{ A }$ and $\frac{\sum_{x \in B} x}{ B }$ are two composites which share no common divisors.