AoPS Community

China National Olympiad 2009
www.artofproblemsolving.com/community/c5232
by Fang-jh

Day 1

1 Given an acute triangle $P B C$ with $P B \neq P C$. Points A, D lie on $P B, P C$, respectively. $A C$ intersects $B D$ at point O. Let E, F be the feet of perpendiculars from O to $A B, C D$, respectively. Denote by M, N the midpoints of $B C, A D$. (1): If four points A, B, C, D lie on one circle, then $E M \cdot F N=E N \cdot F M$. (2): Determine whether the converse of (1) is true or not, justify your answer.

2 Find all the pairs of prime numbers (p, q) such that $p q \mid 5^{p}+5^{q}$.
3 Given two integers m, n satisfying $4<m<n$. Let $A_{1} A_{2} \cdots A_{2 n+1}$ be a regular $2 n+1$ polygon. Denote by P the set of its vertices. Find the number of convex m polygon whose vertices belongs to P and exactly has two acute angles.

Day 2

1 Given an integer $n>3$. Let $a_{1}, a_{2}, \cdots, a_{n}$ be real numbers satisfying $\min \left|a_{i}-a_{j}\right|=1,1 \leq i \leq$ $j \leq n$. Find the minimum value of $\sum_{k=1}^{n}\left|a_{k}\right|^{3}$.

2 Let P be a convex n polygon each of which sides and diagnoals is colored with one of n distinct colors. For which n does: there exists a coloring method such that for any three of n colors, we can always find one triangle whose vertices is of P^{\prime} and whose sides is colored by the three colors respectively.
$3 \quad$ Given an integer $n>3$. Prove that there exists a set S consisting of n pairwisely distinct positive integers such that for any two different non-empty subset of $S: A, B, \frac{\sum_{x \in A} x}{|A|}$ and $\frac{\sum_{x \in B} x}{|B|}$ are two composites which share no common divisors.

