AoPS Community

China National Olympiad 2010
www.artofproblemsolving.com/community/c5233
by Lei Lei, hxy09

Day 1

$1 \quad$ Two circles Γ_{1} and Γ_{2} meet at A and B. A line through B meets Γ_{1} and Γ_{2} again at C and D repsectively. Another line through B meets Γ_{1} and Γ_{2} again at E and F repsectively. Line $C F$ meets Γ_{1} and Γ_{2} again at P and Q respectively. M and N are midpoints of $\operatorname{arc} P B$ and $\operatorname{arc} Q B$ repsectively. Show that if $C D=E F$, then C, F, M, N are concyclic.

2 Let k be an integer ≥ 3. Sequence $\left\{a_{n}\right\}$ satisfies that $a_{k}=2 k$ and for all $n>k$, we have

$$
a_{n}= \begin{cases}a_{n-1}+1 & \text { if }\left(a_{n-1}, n\right)=1 \\ 2 n & \text { if }\left(a_{n-1}, n\right)>1\end{cases}
$$

Prove that there are infinitely many primes in the sequence $\left\{a_{n}-a_{n-1}\right\}$.
3 Given complex numbers a, b, c, we have that $\left|a z^{2}+b z+c\right| \leq 1$ holds true for any complex number $z,|z| \leq 1$. Find the maximum value of $|b c|$.

Day 2

1 Let $m, n \geq 1$ and $a_{1}<a_{2}<\ldots<a_{n}$ be integers. Prove that there exists a subset T of \mathbb{N} such that

$$
|T| \leq 1+\frac{a_{n}-a_{1}}{2 n+1}
$$

and for every $i \in\{1,2, \ldots, m\}$, there exists $t \in T$ and $s \in[-n, n]$, such that $a_{i}=t+s$.
2 There is a deck of cards placed at every points $A_{1}, A_{2}, \ldots, A_{n}$ and O, where $n \geq 3$. We can do one of the following two operations at each step: 1) If there are more than 2 cards at some points A_{i}, we can withdraw three cards from that deck and place one each at A_{i-1}, A_{i+1} and O. (Here $A_{0}=A_{n}$ and $A_{n+1}=A_{1}$); 2) If there are more than or equal to n cards at point O, we can withdraw n cards from that deck and place one each at $A_{1}, A_{2}, \ldots, A_{n}$.
Show that if the total number of cards is more than or equal to $n^{2}+3 n+1$, we can make the number of cards at every points more than or equal to $n+1$ after finitely many steps.

3 Suppose $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ are distinct positive integers such that

$$
(n+1) a_{1}^{n}+n a_{2}^{n}+(n-1) a_{3}^{n} \mid(n+1) b_{1}^{n}+n b_{2}^{n}+(n-1) b_{3}^{n}
$$

holds for all positive integers n. Prove that there exists $k \in N$ such that $b_{i}=k a_{i}$ for $i=1,2,3$.

