AoPS Community

Spain Mathematical Olympiad 2013

www.artofproblemsolving.com/community/c52337
by LordKitenge

1 Let a, b, n positive integers with $a>b$ and $a b-1=n^{2}$. Prove that $a-b \geq \sqrt{4 n-3}$ and study the cases where the equality holds.

2 Find all the possible values of a positive integer n for which the expression $S_{n}=x^{n}+y^{n}+z^{n}$ is constant for all real x, y, z with $x y z=1$ and $x+y+z=0$.

3 Let k, n be positive integers with $n \geq k \geq 3$. We consider $n+1$ points on the real plane with none three of them on the same line. We colour any segment between the points with one of k possibilities. We say that an angle is a "bicolour angle" iff its vertex is one of the $n+1$ points and the two segments that define it are of different colours. Show that there is always a way to colour the segments that makes more than $n\left\lfloor\frac{n}{k}\right\rfloor^{2} \frac{k(k-1)}{2}$ bicolour angles.

4 Are there infinitely many positive integers n that can not be represented as $n=a^{3}+b^{5}+c^{7}+$ $d^{9}+e^{11}$, where a, b, c, d, e are positive integers? Explain why.

5 Study if it there exist an strictly increasing sequence of integers $0=a_{0}<a_{1}<a_{2}<\ldots$ satisfying the following conditions
i) Any natural number can be written as the sum of two terms of the sequence (not necessarily distinct).
$i i$) For any positive integer n we have $a_{n}>\frac{n^{2}}{16}$
6 Let $A B C D$ a convex quadrilateral where:
$|A B|+|C D|=\sqrt{2}|A C|$ and $|B C|+|D A|=\sqrt{2}|B D|$
What form does the quadrilateral have?

