

AoPS Community

Spain Mathematical Olympiad 2013

www.artofproblemsolving.com/community/c52337 by LordKitenge

1	Let a, b, n positive integers with $a > b$ and $ab - 1 = n^2$. Prove that $a - b \ge \sqrt{4n - 3}$ and study the cases where the equality holds.
2	Find all the possible values of a positive integer n for which the expression $S_n = x^n + y^n + z^n$ is constant for all real x, y, z with $xyz = 1$ and $x + y + z = 0$.
3	Let k, n be positive integers with $n \ge k \ge 3$. We consider $n + 1$ points on the real plane with none three of them on the same line. We colour any segment between the points with one of k possibilities. We say that an angle is a "bicolour angle" iff its vertex is one of the $n + 1$ points and the two segments that define it are of different colours. Show that there is always a way to colour the segments that makes more than $n \left\lfloor \frac{n}{k} \right\rfloor^2 \frac{k(k-1)}{2}$ bicolour angles.
4	Are there infinitely many positive integers n that can not be represented as $n = a^3 + b^5 + c^7 + d^9 + e^{11}$, where a, b, c, d, e are positive integers? Explain why.
5	Study if it there exist an strictly increasing sequence of integers $0 = a_0 < a_1 < a_2 <$ satisfying the following conditions
	i) Any natural number can be written as the sum of two terms of the sequence (not necessarily distinct).
	$ii)$ For any positive integer n we have $a_n > rac{n^2}{16}$
6	Let <i>ABCD</i> a convex quadrilateral where:
	$ AB + CD =\sqrt{2} AC $ and $ BC + DA =\sqrt{2} BD $
	What form does the quadrilateral have?

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱 🙀