AoPS Community

China National Olympiad 2011
www.artofproblemsolving.com/community/c5234
by zhaobin

Day 1

1 Let $a_{1}, a_{2}, \ldots, a_{n}$ are real numbers, prove that;

$$
\sum_{i=1}^{n} a_{i}^{2}-\sum_{i=1}^{n} a_{i} a_{i+1} \leq\left\lfloor\frac{n}{2}\right\rfloor(M-m)^{2} .
$$

where $a_{n+1}=a_{1}, M=\max _{1 \leq i \leq n} a_{i}, m=\min _{1 \leq i \leq n} a_{i}$.
2 On the circumcircle of the acute triangle $A B C, D$ is the midpoint of $\widehat{B C}$. Let X be a point on $\widehat{B D}, E$ the midpoint of $\overparen{A X}$, and let S lie on $\overparen{A C}$. The lines $S D$ and $B C$ have intersection R, and the lines $S E$ and $A X$ have intersection T. If $R T \| D E$, prove that the incenter of the triangle $A B C$ is on the line $R T$.

3 Let A be a set consist of finite real numbers, $A_{1}, A_{2}, \cdots, A_{n}$ be nonempty sets of A, such that
(a) The sum of the elements of A is 0 ,
(b) For all $x_{i} \in A_{i}(i=1,2, \cdots, n)$, we have $x_{1}+x_{2}+\cdots+x_{n}>0$.

Prove that there exist $1 \leq k \leq n$, and $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$, such that

$$
\left|A_{i_{1}} \bigcup A_{i_{2}} \bigcup \cdots \bigcup A_{i_{k}}\right|<\frac{k}{n}|A| .
$$

Where $|X|$ denote the numbers of the elements in set X.

Day 2

1 Let n be an given positive integer, the set $S=\{1,2, \cdots, n\}$.For any nonempty set A and B, find the minimum of $|A \Delta S|+|B \Delta S|+|C \Delta S|$, where $C=\{a+b \mid a \in A, b \in B\}, X \Delta Y=X \cup Y-X \cap Y$.

2 Let $a_{i}, b_{i}, i=1, \cdots, n$ are nonnegitive numbers, and $n \geq 4$, such that $a_{1}+a_{2}+\cdots+a_{n}=$ $b_{1}+b_{2}+\cdots+b_{n}>0$.
Find the maximum of $\frac{\sum_{i=1}^{n} a_{i}\left(a_{i}+b_{i}\right)}{\sum_{i=1}^{n} b_{i}\left(a_{i}+b_{i}\right)}$

3 Let m, n be positive integer numbers. Prove that there exist infinite many couples of positive integer nubmers (a, b) such that

$$
a+b \mid a m^{a}+b n^{b}, \quad \operatorname{gcd}(a, b)=1
$$

