Art of Problem Solving

AoPS Community

China National Olympiad 2012
www.artofproblemsolving.com/community/c5235
by yunxiu, littletush

Day 1

1 In the triangle $A B C, \angle A$ is biggest. On the circumcircle of $\triangle A B C$, let D be the midpoint of $\widehat{A B C}$ and E be the midpoint of $\widehat{A C B}$. The circle c_{1} passes through A, B and is tangent to $A C$ at A, the circle c_{2} passes through A, E and is tangent $A D$ at $A . c_{1}$ and c_{2} intersect at A and P. Prove that $A P$ bisects $\angle B A C$.

2 Let p be a prime. We arrange the numbers in $\left\{1,2, \ldots, p^{2}\right\}$ as a $p \times p$ matrix $A=\left(a_{i j}\right)$. Next we can select any row or column and add 1 to every number in it, or subtract 1 from every number in it. We call the arrangement good if we can change every number of the matrix to 0 in a finite number of such moves. How many good arrangements are there?

3 Prove for any $M>2$, there exists an increasing sequence of positive integers $a_{1}<a_{2}<\ldots$
satisfying:

1) $a_{i}>M^{i}$ for any i;
2) There exists a positive integer m and $b_{1}, b_{2}, \ldots, b_{m} \in\{-1,1\}$, satisfying $n=a_{1} b_{1}+a_{2} b_{2}+$ $\ldots+a_{m} b_{m}$ if and only if $n \in \mathbb{Z} /\{0\}$.

Day 2

1 Let $f(x)=(x+a)(x+b)$ where $a, b>0$. For any reals $x_{1}, x_{2}, \ldots, x_{n} \geqslant 0$ satisfying $x_{1}+x_{2}+$ $\ldots+x_{n}=1$, find the maximum of $F=\sum_{1 \leqslant i<j \leqslant n} \min \left\{f\left(x_{i}\right), f\left(x_{j}\right)\right\}$.

2 Consider a square-free even integer n and a prime p, such that

1) $(n, p)=1$;
2) $p \leq 2 \sqrt{n}$;
3) There exists an integer k such that $p \mid n+k^{2}$.

Prove that there exists pairwise distinct positive integers a, b, c such that $n=a b+b c+c a$.
Proposed by Hongbing Yu
3 Find the smallest positive integer k such that, for any subset A of $S=\{1,2, \ldots, 2012\}$ with $|A|=k$, there exist three elements x, y, z in A such that $x=a+b, y=b+c, z=c+a$, where a, b, c are in S and are distinct integers.

Proposed by Huawei Zhu

