

AoPS Community

2012 China National Olympiad

China National Olympiad 2012

www.artofproblemsolving.com/community/c5235 by yunxiu, littletush

Day 1

1 In the triangle ABC, $\angle A$ is biggest. On the circumcircle of $\triangle ABC$, let D be the midpoint of \widehat{ABC} and E be the midpoint of \widehat{ACB} . The circle c_1 passes through A, B and is tangent to AC at A, the circle c_2 passes through A, E and is tangent AD at A. c_1 and c_2 intersect at A and P. Prove that AP bisects $\angle BAC$.

2 Let *p* be a prime. We arrange the numbers in $\{1, 2, ..., p^2\}$ as a $p \times p$ matrix $A = (a_{ij})$. Next we can select any row or column and add 1 to every number in it, or subtract 1 from every number in it. We call the arrangement *good* if we can change every number of the matrix to 0 in a finite number of such moves. How many good arrangements are there?

3 Prove for any M > 2, there exists an increasing sequence of positive integers $a_1 < a_2 < \dots$

AoPS Community

satisfying:

	1) $a_i > M^i$ for any <i>i</i> ; 2) There exists a positive integer <i>m</i> and $b_1, b_2, \ldots, b_m \in \{-1, 1\}$, satisfying $n = a_1b_1 + a_2b_2 + \ldots + a_mb_m$ if and only if $n \in \mathbb{Z}/\{0\}$.
Day 2	2
1	Let $f(x) = (x + a)(x + b)$ where $a, b > 0$. For any reals $x_1, x_2, \dots, x_n \ge 0$ satisfying $x_1 + x_2 + \dots + x_n = 1$, find the maximum of $F = \sum_{1 \le i < j \le n} \min \{f(x_i), f(x_j)\}$.
2	Consider a square-free even integer n and a prime p , such that 1) $(n, p) = 1$; 2) $p \le 2\sqrt{n}$; 3) There exists an integer k such that $p n + k^2$. Prove that there exists pairwise distinct positive integers a, b, c such that $n = ab + bc + ca$. <i>Proposed by Hongbing Yu</i>
3	Find the smallest positive integer k such that, for any subset A of $S = \{1, 2,, 2012\}$ with $ A = k$, there exist three elements x, y, z in A such that $x = a + b$, $y = b + c$, $z = c + a$, where a, b, c are in S and are distinct integers.
	Proposed by Huawei Zhu

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY