

AoPS Community

2013 China National Olympiad

China National Olympiad 2013

www.artofproblemsolving.com/community/c5236 by yunxiu, sqing

Day 1	
1	Two circles K_1 and K_2 of different radii intersect at two points A and B , let C and D be two points on K_1 and K_2 , respectively, such that A is the midpoint of the segment CD . The exten- sion of DB meets K_1 at another point E , the extension of CB meets K_2 at another point F . Let l_1 and l_2 be the perpendicular bisectors of CD and EF , respectively. i) Show that l_1 and l_2 have a unique common point (denoted by P). ii) Prove that the lengths of CA , AP and PE are the side lengths of a right triangle.
2	Find all nonempty sets S of integers such that $3m - 2n \in S$ for all (not necessarily distinct) $m, n \in S$.
3	Find all positive real numbers t with the following property: there exists an infinite set X of real numbers such that the inequality
	$\max\{ x - (a - d) , y - a , z - (a + d) \} > td$
	holds for all (not necessarily distinct) $x, y, z \in X$, all real numbers a and all positive real numbers d .
Day 2	
1	Let $n \ge 2$ be an integer. There are n finite sets A_1, A_2, \ldots, A_n which satisfy the condition
	$ A_i \Delta A_j = i - j \forall i, j \in \{1, 2,, n\}.$
	Find the minimum of $\sum_{i=1}^{n} A_i $.
2	For any positive integer n and $0 \le i \le n$, denote $C_n^i \equiv c(n,i) \pmod{2}$, where $c(n,i) \in \{0,1\}$. Define $f(n,q) = \sum_{i=0}^n c(n,i)q^i$
	where m, n, q are positive integers and $q + 1 \neq 2^{\alpha}$ for any $\alpha \in \mathbb{N}$. Prove that if $f(m, q) f(n, q)$, then $f(m, r) f(n, r)$ for any positive integer r .

AoPS Community

2013 China National Olympiad

3 Let m, n be positive integers. Find the minimum positive integer N which satisfies the following condition. If there exists a set S of integers that contains a complete residue system module m such that |S| = N, then there exists a nonempty set $A \subseteq S$ so that $n \mid \sum_{x \in A} x$.

Act of Problem Solving is an ACS WASC Accredited School.