AoPS Community

China National Olympiad 2013
www.artofproblemsolving.com/community/c5236
by yunxiu, sqing

Day 1

1 Two circles K_{1} and K_{2} of different radii intersect at two points A and B, let C and D be two points on K_{1} and K_{2}, respectively, such that A is the midpoint of the segment $C D$. The extension of $D B$ meets K_{1} at another point E, the extension of $C B$ meets K_{2} at another point F. Let l_{1} and l_{2} be the perpendicular bisectors of $C D$ and $E F$, respectively.
i) Show that l_{1} and l_{2} have a unique common point (denoted by P).
ii) Prove that the lengths of $C A, A P$ and $P E$ are the side lengths of a right triangle.

2 Find all nonempty sets S of integers such that $3 m-2 n \in S$ for all (not necessarily distinct) $m, n \in S$.

3 Find all positive real numbers t with the following property: there exists an infinite set X of real numbers such that the inequality

$$
\max \{|x-(a-d)|,|y-a|,|z-(a+d)|\}>t d
$$

holds for all (not necessarily distinct) $x, y, z \in X$, all real numbers a and all positive real numbers d.

Day 2

1 Let $n \geqslant 2$ be an integer. There are n finite sets $A_{1}, A_{2}, \ldots, A_{n}$ which satisfy the condition

$$
\left|A_{i} \Delta A_{j}\right|=|i-j| \quad \forall i, j \in\{1,2, \ldots, n\} .
$$

Find the minimum of $\sum_{i=1}^{n}\left|A_{i}\right|$.
2 For any positive integer n and $0 \leqslant i \leqslant n$, denote $C_{n}^{i} \equiv c(n, i)(\bmod 2)$, where $c(n, i) \in\{0,1\}$. Define

$$
f(n, q)=\sum_{i=0}^{n} c(n, i) q^{i}
$$

where m, n, q are positive integers and $q+1 \neq 2^{\alpha}$ for any $\alpha \in \mathbb{N}$. Prove that if $f(m, q) \mid f(n, q)$, then $f(m, r) \mid f(n, r)$ for any positive integer r.

3 Let m, n be positive integers. Find the minimum positive integer N which satisfies the following condition. If there exists a set S of integers that contains a complete residue system module m such that $|S|=N$, then there exists a nonempty set $A \subseteq S$ so that $n \mid \sum_{x \in A} x$.

