

AoPS Community

2014 China National Olympiad

China National Olympiad 2014

www.artofproblemsolving.com/community/c5237 by 61plus, sqing

Day 1

-

1	Let ABC be a triangle with $AB > AC$. Let D be the foot of the internal angle bisector of A . Points F and E are on AC , AB respectively such that B, C, F, E are concyclic. Prove that the circumcentre of DEF is the incentre of ABC if and only if $BE + CF = BC$.
2	For the integer $n > 1$, define $D(n) = \{a - b \mid ab = n, a > b > 0, a, b \in \mathbb{N}\}$. Prove that for any integer $k > 1$, there exists pairwise distinct positive integers n_1, n_2, \ldots, n_k such that $n_1, \ldots, n_k > 1$ and $ D(n_1) \cap D(n_2) \cap \cdots \cap D(n_k) \ge 2$.
3	Prove that: there exists only one function $f : \mathbb{N}^* \to \mathbb{N}^*$ satisfying: i) $f(1) = f(2) = 1$; ii) $f(n) = f(f(n-1)) + f(n - f(n-1))$ for $n \ge 3$. For each integer $m \ge 2$, find the value of $f(2^m)$.
Day 2	2
1	Let $n = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}$ be the prime factorisation of n . Define $\omega(n) = t$ and $\Omega(n) = a_1 + a_2 + \ldots + a_t$. Prove or disprove: For any fixed positive integer k and positive reals α, β , there exists a positive integer $n > 1$ such that i) $\frac{\omega(n+k)}{\omega(n)} > \alpha$ ii) $\frac{\Omega(n+k)}{\Omega(n)} < \beta$.
2	Let $f : X \to X$, where $X = \{1, 2,, 100\}$, be a function satisfying: 1) $f(x) \neq x$ for all $x = 1, 2,, 100$; 2) for any subset A of X such that $ A = 40$, we have $A \cap f(A) \neq \emptyset$. Find the minimum k such that for any such function f , there exist a subset B of X , where $ B = k$, such that $B \cup f(B) = X$.
3	For non-empty number sets S, T , define the sets $S + T = \{s + t \mid s \in S, t \in T\}$ and $2S = \{2s \mid s \in S\}$. Let n be a positive integer, and A, B be two non-empty subsets of $\{1, 2, n\}$. Show that there exists a subset D of $A + B$ such that 1) $D + D \subseteq 2(A + B)$, 2) $ D \ge \frac{ A \cdot B }{2n}$,

AoPS Community

where |X| is the number of elements of the finite set X.

Act of Problem Solving is an ACS WASC Accredited School.