AoPS Community

China National Olympiad 2014
www.artofproblemsolving.com/community/c5237
by 61 plus, sqing

Day 1

1 Let $A B C$ be a triangle with $A B>A C$. Let D be the foot of the internal angle bisector of A. Points F and E are on $A C, A B$ respectively such that B, C, F, E are concyclic. Prove that the circumcentre of $D E F$ is the incentre of $A B C$ if and only if $B E+C F=B C$.

2 For the integer $n>1$, define $D(n)=\{a-b \mid a b=n, a>b>0, a, b \in \mathbb{N}\}$. Prove that for any integer $k>1$, there exists pairwise distinct positive integers $n_{1}, n_{2}, \ldots, n_{k}$ such that $n_{1}, \ldots, n_{k}>1$ and $\left|D\left(n_{1}\right) \cap D\left(n_{2}\right) \cap \cdots \cap D\left(n_{k}\right)\right| \geq 2$.

3 Prove that: there exists only one function $f: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$ satisfying:
i) $f(1)=f(2)=1$;
ii) $f(n)=f(f(n-1))+f(n-f(n-1))$ for $n \geq 3$.

For each integer $m \geq 2$, find the value of $f\left(2^{m}\right)$.

Day 2

1 Let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{t}^{a_{t}}$ be the prime factorisation of n. Define $\omega(n)=t$ and $\Omega(n)=a_{1}+a_{2}+\ldots+a_{t}$. Prove or disprove:
For any fixed positive integer k and positive reals α, β, there exists a positive integer $n>1$ such that
i) $\frac{\omega(n+k)}{\omega(n)}>\alpha$
ii) $\frac{\Omega(n+k)}{\Omega(n)}<\beta$.

2 Let $f: X \rightarrow X$, where $X=\{1,2, \ldots, 100\}$, be a function satisfying:

1) $f(x) \neq x$ for all $x=1,2, \ldots, 100$;
2) for any subset A of X such that $|A|=40$, we have $A \cap f(A) \neq \emptyset$.

Find the minimum k such that for any such function f, there exist a subset B of X, where $|B|=k$, such that $B \cup f(B)=X$.

3 For non-empty number sets S, T, define the sets $S+T=\{s+t \mid s \in S, t \in T\}$ and $2 S=\{2 s \mid$ $s \in S\}$.
Let n be a positive integer, and A, B be two non-empty subsets of $\{1,2 \ldots, n\}$. Show that there exists a subset D of $A+B$ such that

1) $D+D \subseteq 2(A+B)$,
2) $|D| \geq \frac{|A| \cdot|B|}{2 n}$,
where $|X|$ is the number of elements of the finite set X.
